Generalizations of poly-Bernoulli and poly-Cauchy numbers

Mehmet Cenkci1, Paul Thomas Young2
1Department of Mathematics, Akdeniz University, Antalya, Turkey
2Department of Mathematics, College of Charleston, Charleston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arakawa, T., Ibukiyama, T., Kaneko, M.: Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics. Springer, Tokyo (2014)

Arakawa, T., Kaneko, M.: On poly-Bernoulli numbers. Comment. Math. Univ. St. Paul 48(2), 159–167 (1999)

Arakawa, T., Kaneko, M.: Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153, 189–209 (1999)

Bayad, A., Hamahata, Y.: Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65(1), 15–24 (2011)

Brewbaker, C.: A combinatorial interpretation of the poly-Bernoulli numbres and two Fermat analogues. Integers 8(1), # A2 (2008)

Carlitz, L.: A note on Bernoulli and Euler polynomials of the second kind. Scripta Math. 25, 323–330 (1961)

Carlitz, L.: Degenerate Stirling. Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)

Carlitz, L.: Weighted Stirling numbers of the first and second kind—I. Fibonacci Quart. 18(2), 147–162 (1980)

Cenkci, M., Komatsu, T.: Poly-Bernoulli numbers and polynomials with a $$q$$ q parameter. J. Number Theory 152, 38–54 (2015)

Coppo, M.-A., Candelpergher, B.: The Arakawa–Kaneko zeta functions. Ramanujan J. 22(2), 153–162 (2010)

Coppo, M.-A., Candelpergher, B.: Inverse binomial series and values of Arakawa–Kaneko zeta functions. J. Number Theory 150, 98–119 (2015)

El-Desouky, B.S., Gomaa, R.S.: Multiparameter poly-Cauchy and poly-Bernoulli numbers and polynomials (2014). arXiv:1410.5300

Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

Howard, F.T.: Degenerate weighted Stirling numbers. Discrete Math. 57(1–2), 45–58 (1985)

Hsu, L.C., Shiue, P.J.-S.: A unified approach to generalized Stirling numbers. Adv. Appl. Math. 20(3), 366–384 (1998)

Jolany, H., Corcino, R.B.: Explicit formula for generalization of poly-Bernoulli numbers and polynomials with $$a,b,c$$ a , b , c parameters (2011). arXiv:1109.1387

Jordan, C.: Calculus of Finite Differences, 2nd edn. Chelsea, New York (1950)

Kamano, K., Komatsu, T.: Poly-Cauchy polynomials. Mosc. J. Comb. Number Theory 3(2), 61–87 (2013)

Kaneko, M.: Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9(1), 221–228 (1997)

Knuth, D.E.: Two notes on notation. Amer. Math. Monthly 99(5), 403–422 (1992)

Komatsu, T.: Poly-Cauchy numbers with a $$q$$ q parameter. Ramanujan J. 31(3), 353–371 (2013)

Komatsu, T.: Poly-Cauchy numbers. Kyushu J. Math. 67(1), 143–153 (2013)

Komatsu, T., Laohakosol, V., Liptai, K.: A generalization of poly-Cauchy numbers and their properties. Abstr. Appl. Anal. # 179841 (2013)

Komatsu, T., Luca, F.: Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers. Ann. Math. Inform. 41, 99–105 (2013)

Komatsu, T., Szalay, L.: Shifted poly-Cauchy numbers. Lithuanian Math. J. 54(2), 166–181 (2014)

Launois, S.: Combinatorics of $$\fancyscript {H}$$ H -primes in quantum matrices. J. Algebra 309(1), 139–167 (2007)

Merlini, D., Sprugnoli, R., Verri, M.C.: The Cauchy numbers. Discrete Math. 306(16), 1906–1920 (2006)

Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Chelsea, New York (1954)

Sánchez-Peregrino, R.: Closed formula for poly-Bernoulli numbers. Fibonacci Quart. 40(4), 362–364 (2002)

Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer, Dordrecht (2001)

Young, P.T.: Congruences for degenerate number sequences. Discrete Math. 270(1–3), 279–289 (2003)

Young, P.T.: Symmetries of Bernoulli polynomial series and Arakawa–Kaneko zeta functions. J. Number Theory 143, 142–161 (2014)

Young, P.T.: The $$p$$ p -adic Arakawa–Kaneko zeta functions and $$p$$ p -adic Lerch transcendent. J. Number Theory 155, 13–35 (2015)