Generalizations of poly-Bernoulli and poly-Cauchy numbers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arakawa, T., Ibukiyama, T., Kaneko, M.: Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics. Springer, Tokyo (2014)
Arakawa, T., Kaneko, M.: On poly-Bernoulli numbers. Comment. Math. Univ. St. Paul 48(2), 159–167 (1999)
Arakawa, T., Kaneko, M.: Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153, 189–209 (1999)
Bayad, A., Hamahata, Y.: Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65(1), 15–24 (2011)
Brewbaker, C.: A combinatorial interpretation of the poly-Bernoulli numbres and two Fermat analogues. Integers 8(1), # A2 (2008)
Carlitz, L.: A note on Bernoulli and Euler polynomials of the second kind. Scripta Math. 25, 323–330 (1961)
Carlitz, L.: Degenerate Stirling. Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)
Carlitz, L.: Weighted Stirling numbers of the first and second kind—I. Fibonacci Quart. 18(2), 147–162 (1980)
Cenkci, M., Komatsu, T.: Poly-Bernoulli numbers and polynomials with a $$q$$ q parameter. J. Number Theory 152, 38–54 (2015)
Coppo, M.-A., Candelpergher, B.: The Arakawa–Kaneko zeta functions. Ramanujan J. 22(2), 153–162 (2010)
Coppo, M.-A., Candelpergher, B.: Inverse binomial series and values of Arakawa–Kaneko zeta functions. J. Number Theory 150, 98–119 (2015)
El-Desouky, B.S., Gomaa, R.S.: Multiparameter poly-Cauchy and poly-Bernoulli numbers and polynomials (2014). arXiv:1410.5300
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)
Hsu, L.C., Shiue, P.J.-S.: A unified approach to generalized Stirling numbers. Adv. Appl. Math. 20(3), 366–384 (1998)
Jolany, H., Corcino, R.B.: Explicit formula for generalization of poly-Bernoulli numbers and polynomials with $$a,b,c$$ a , b , c parameters (2011). arXiv:1109.1387
Jordan, C.: Calculus of Finite Differences, 2nd edn. Chelsea, New York (1950)
Kamano, K., Komatsu, T.: Poly-Cauchy polynomials. Mosc. J. Comb. Number Theory 3(2), 61–87 (2013)
Komatsu, T., Laohakosol, V., Liptai, K.: A generalization of poly-Cauchy numbers and their properties. Abstr. Appl. Anal. # 179841 (2013)
Komatsu, T., Luca, F.: Some relationships between poly-Cauchy numbers and poly-Bernoulli numbers. Ann. Math. Inform. 41, 99–105 (2013)
Launois, S.: Combinatorics of $$\fancyscript {H}$$ H -primes in quantum matrices. J. Algebra 309(1), 139–167 (2007)
Merlini, D., Sprugnoli, R., Verri, M.C.: The Cauchy numbers. Discrete Math. 306(16), 1906–1920 (2006)
Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Chelsea, New York (1954)
Sánchez-Peregrino, R.: Closed formula for poly-Bernoulli numbers. Fibonacci Quart. 40(4), 362–364 (2002)
Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer, Dordrecht (2001)
Young, P.T.: Symmetries of Bernoulli polynomial series and Arakawa–Kaneko zeta functions. J. Number Theory 143, 142–161 (2014)