Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation

Frank Neitzel1,2
1University of Applied Sciences Mainz, Mainz, Germany
2School of Earth Sciences, The Ohio State University, Columbus, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aitken AC (1935) On least squares and linear combinations of observations. Proc R Soc Edinburgh 55: 42–48

Akyilmaz O (2007) Total least squares solution of coordinate transformation. Surv Rev 39(303): 68–80

Benning W (2007) Statistics in geodesy, geoinformation and civil engineering (in German), 2nd edn. Herbert Wichmann Verlag, Heidelberg

Böck R (1961) Most general formulation of least-squares adjustment computations (in German). Z für Vermessungswesen 86:43–45 (see also pp 98–106)

Felus Y, Schaffrin B (2005) Performing similarity transformations using the errors-in-variables-model. In: Proceedings of the ASPRS Meeting, Washington, DC, May 2005, on CD

Gauss CF (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientium. F. Perthes und I.H. Besser, Hamburg

Golub GH, van Loan C (1980) An analysis of the total least-squares problem. SIAM J Numer Anal 17(6): 883–893

Helmert FR (1924) Adjustment computation with the least-squares method (in German), 3rd edn. Teubner-Verlag, Leipzig

Lawson CL, Hanson RJ (1974) Solving least-squares problems. Prentice-Hall, Englewood Cliffs

Lenzmann L, Lenzmann E (2004) Rigorous adjustment of the nonlinear Gauss–Helmert model (in German). Allgem Verm Nachr 111: 68–73

Mikhail EM, Gracie G (1981) Analysis and adjustment of survey measurements. Van Nostrand Reinhold Company, New York

Neitzel F, Petrovic S (2008) Total least-squares (TLS) in the context of least-squares adjustment on the example of straight-line fitting (in German). Z für Vermessungswesen 133: 141–148

Niemeier W (2008) Adjustment computations (in German), 2nd edn. Walter de Gruyter, New York

Petrovic S (2003) Parameter estimation for incomplete functional models in geodesy (in German). German Geodetic Comm, Publ. No. C-563, Munich

Pope AJ (1972) Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th Annual Meeting of the American Society of Photogrammetry, Washington, DC, pp 449–477

Schaffrin B, Lee I, Felus Y, Choi Y (2006) Total least-squares (TLS) for geodetic straight-line and plane adjustment. Boll Geod Sci Affini 65(3): 141–168

Schaffrin B (2008) Correspondence, coordinate transformation. Surv Rev 40(307): 102

Schaffrin B, Felus Y (2008) On the multivariate total least-squares approach to empirical coordinate transformations. Three Algorithms J Geod 82(6): 373–383

Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geod 82(7): 415–421

Schaffrin B, Neitzel F (2011) Modifying Cadzow’s algorithm to generate the TLS solution for Structured EIV-Models (submitted)

Schaffrin B, Snow K (2010) Total least-squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra Appl 432(8): 2061–2076

Schaffrin B, Wieser A (2009) Empirical affine reference frame transformations by weighted multivariate TLS adjustment. In: Drewes H (ed) International Association of Geodesy Symposia Volume 134, Geodetic Reference Frames IAG Symposium Munich, Germany, 9–14 October 2006, pp 213–218

Schwarz HR, Rutishauser H, Stiefel E (1968) Numerics of symmetric matrices (in German). B. G. Teubner, Stuttgart

van Huffel S, Vandewalle J (1991) The total least-squares problem, computational aspects and analysis. SIAM, Philadelphia

Wolf PR, Ghilani CD (1997) Adjustment computations: statistics and least squares in surveying and GIS. Wiley, New York