Generalised linear model-based algorithm for detection of outliers in environmental data and comparison with semi-parametric outlier detection methods
Tài liệu tham khảo
Abrutzky, 2012, Health effects of climate and air pollution in buenos aires: a first time series analysis, J. Environ. Protect., 3, 262, 10.4236/jep.2012.33033
Agresti, 2002
Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716, 10.1109/TAC.1974.1100705
Araki, 2017, Effect of spatial outliers on the regression modelling of air pollutant concentrations: a case study in Japan, Atmos. Environ., 153, 83, 10.1016/j.atmosenv.2016.12.057
Baffi, 1999, Non-linear projection to latent structures revisited (the neural network PLS algorithm), Comput. Chem. Eng., 23, 1293, 10.1016/S0098-1354(99)00291-4
Bao, 2009, Partial least squares with outlier detection in spectral analysis: a tool to predict gasoline properties, Fuel, 88, 1216, 10.1016/j.fuel.2008.11.025
Barnett, 2004
Barnett, 1978
Beirlant, 2004
Ben-Gal, 2005, Outlier detection, 117
Bobia, 2015, Spatial outlier detection in the PM10 monitoring network of Normandy (France), Atmo. Pollut. Res., 6, 476, 10.5094/APR.2015.053
Brněnské komunikace, 2010
Brněnské komunikace, 2011
Brněnské komunikace, 2012
Brněnské komunikace, 2013
Brněnské komunikace, 2014
Brněnské komunikace, 2015
Brněnské komunikace, 2016
Burman, 1988
Čampulová, 2018, Comparison of methods for smoothing environmental data with an application to particulate matter PM10, Acta Univ. Agric. Silvic. Mendelianae Brunensis, 66, 453, 10.11118/actaun201866020453
Čampulová, 2017, Control chart and six sigma based algorithms for identification of outliers in experimental data, with an application to particulate matter PM10, Atmos. Pollut. Res., 8, 700, 10.1016/j.apr.2017.01.004
Čampulová, 2018, Outlier detection in PM10 aerosols by generalised linear model
Čampulová, 2018, Algorithm for identification of outliers in environmental data, J. Chemometr., 32, 1, 10.1002/cem.2997
Chaloulakou, 2003, Measurements of PM10 and PM2.5 particle concentrations in athens, Greece, Atmos. Environ., 37, 649, 10.1016/S1352-2310(02)00898-1
Chandola, 2009, Anomaly detection: a survey, ACM Comput. Surv., 41, 58, 10.1145/1541880.1541882
EEA (European Environment Agency), 2017
EEA (European Environment Agency), 2018
EU, 2008, Directive 2008/50/ec of the European Parliament and of the Council of 21 may 2008 on ambient air quality and cleaner air for Europe, Off. J. Eur. Commun. L, 152, 1
Fawcett, 2016, Sea-surge and wind speed extremes: optimal estimation strategies for planners and engineers, Stoch. Environ. Res. Risk Assess., 30, 463, 10.1007/s00477-015-1132-3
Filzmoser, 2005, Identification of multivariate outliers: a performance study, Aust. J. Stat., 34, 127, 10.17713/ajs.v34i2.406
Fox, 1972, Outliers in time series, J. Roy. Stat. Soc. Ser. B, 34, 350
Garces, 2011, Outliers detection in environmental monitoring databases, Eng. Appl. Artif. Intell., 24, 341, 10.1016/j.engappai.2010.10.018
Gomes, 1993, On the estimation of parameter of rare events in environmental time series, 225
Gupta, 2014, Outlier detection for temporal data: a survey, IEEE T. Knowl. Data Eng., 26, 2250, 10.1109/TKDE.2013.184
Hartigan, 1979, A k-means clustering algorithm, Appl. Stat., 28, 10.2307/2346830
Holešovský, 2018, Semiparametric outlier detection in nonstationary times series: case study for atmospheric pollution in Brno, Czech Republic, Atmos. Pollut. Res., 9, 27, 10.1016/j.apr.2017.06.005
Hormann, 2005, Analysis and prediction of particulate matter PM10 for the winter season in Graz, Aust. J. Stat., 34, 307, 10.17713/ajs.v34i4.420
Hrdličková, 2008, Identification of factors affecting air pollution by dust aerosol PM10 in Brno City, Czech Republic, Atmos. Pollut. Res., 42, 8661
Hübnerová, 2014, Analysis of daily average PM10 predictions by generalized linear models in Brno, Czech Republic, Atmos. Pollut. Res., 5, 471, 10.5094/APR.2014.055
Iglewicz, 1993, The ASQC basic references in quality control: statistical techniques, vol. 16
Johnson, 1992
Kim, 2015, A review on the human health impact of airborne particulate matter, Environ. Int., 74, 136, 10.1016/j.envint.2014.10.005
Křůmal, 2017, Characterization of organic compounds in winter PM1 aerosols in a small industrial town, Atmos. Pollut. Res., 8, 930, 10.1016/j.apr.2017.03.003
Lourenço, 2014, M-regression, false discovery rates and outlier detection with application to genetic association studies, Comput. Stat. Data Anal., 78, 33, 10.1016/j.csda.2014.03.019
McCullagh, 1989
McLachlan, 2008
Mikuška, 2017, Seasonal variability of monosaccharide anhydrides, resin acids,methoxyphenols and saccharides in PM2.5 in Brno, the Czech Republic, Atmos. Pollut. Res., 8, 576, 10.1016/j.apr.2016.12.018
Miller, 2010, Intra-urban correlation and spatial variability of air toxics across an international airshed in Detroit, Michigan (USA) and Windsor, Ontario (Canada), Atmos. Environ., 44, 1162, 10.1016/j.atmosenv.2009.12.030
O'Leary, 2014, Modeling spatiotemporal variability of intra-urban air pollutants in Detroit: a pragmatic approach, Atmos. Environ., 94, 417, 10.1016/j.atmosenv.2014.05.010
O'Leary, 2016, Identification and influence of spatio-temporal outliers in urban air quality measurements, Sci. Total Environ., 573, 55, 10.1016/j.scitotenv.2016.08.031
Pope, 2006, Health effects of fine particulate air pollution: lines that connect, J. Air Waste Manag. Assoc., 56, 709, 10.1080/10473289.2006.10464485
Pope, 1995, Review of epidemiological evidence of health effects of particulate air pollution, Inhal. Toxicol., 7, 1, 10.3109/08958379509014267
Rahman, 2012, Multiple linear regression models in outlier detection, Int. J. Res. Comput. Sci., 2, 23, 10.7815/ijorcs.22.2012.018
Restrepo, 2012, Asthma hospital admissions and ambient air pollutant concentrations in New York city, J. Environ. Protect., 3, 1102, 10.4236/jep.2012.329129
Rice, 2006, A simple diagnostic plot connecting robust estimation, outlier detection, and false discovery rates, J. Appl. Stat., 33, 1131, 10.1080/02664760600747002
Ripley, 1999
Shaadan, 2015, Anomaly detection and assessment of PM10 functional data at several locations in the klang valley, Malaysia, Atmos. Pollut. Res., 6, 365, 10.5094/APR.2015.040
She, 2011, Outlier detection using nonconvex penalized regression, J. Am. Stat. Assoc., 106, 626, 10.1198/jasa.2011.tm10390
Silva, 2016, On some aspects of peaks over-threshold modeling of oods under nonstationarity using climate covariates, Stoch. Environ. Res. Risk Assess., 30, 207, 10.1007/s00477-015-1072-y
Stadlober, 2008, Quality and performance of a PM10 daily forecasting model, Atmos. Environ., 42, 1098, 10.1016/j.atmosenv.2007.10.073
Stadlober, 2012, Prediction and forecast of daily PM10 concentrations in Brno and Graz by different regression approaches, Aust. J. Stat., 41, 287, 10.17713/ajs.v41i4.169
WHO, 2005