Generalised homogenisation procedures for granular materials
Tóm tắt
Engineering materials are generally non-homogeneous, yet standard continuum descriptions of such materials are admissible, provided that the size of the non-homogeneities is much smaller than the characteristic length of the deformation pattern. If this is not the case, either the individual non-homogeneities have to be described explicitly or the range of applicability of the continuum concept is extended by including additional variables or degrees of freedom. In the paper the discrete nature of granular materials is modelled in the simplest possible way by means of finite-difference equations. The difference equations may be homogenised in two ways: the simplest approach is to replace the finite differences by the corresponding Taylor expansions. This leads to a Cosserat continuum theory. A more sophisticated strategy is to homogenise the equations by means of a discrete Fourier transformation. The result is a Kunin-type non-local theory. In the following these theories are analysed by considering a model consisting of independent periodic 1D chains of solid spheres connected by shear translational and rotational springs. It is found that the Cosserat theory offers a healthy balance between accuracy and simplicity. Kunin’s integral homogenisation theory leads to a non-local Cosserat continuum description that yields an exact solution, but does not offer any real simplification in the solution of the model equations as compared to the original discrete system. The rotational degree of freedom affects the phenomenology of wave propagation considerably. When the rotation is suppressed, only one type of wave, viz. a shear wave, exists. When the restriction on particle rotation is relaxed, the velocity of this wave decreases and another, high velocity wave arises.
Tài liệu tham khảo
E. Cosserat F. Cosserat (1909) Théorie des Corps Déformables A Herrmann et Fils Paris 226
W. Nowacki (1974) The linear theory of micropolar elasticity W. Nowacki W. Olszak (Eds) Micropolar Elasticity Springer-Verlag Wien, New York 1–43
R.D. Mindlin (1964) ArticleTitleMicro-structure in linear elasticity Arch. Ration. Mech. Anal 16 51–78
A.V. Dyskin R.L. Salganik K.B. Ustinov (1992) Multi-scale geomechanical modelling T. Szwedziki G.R. Baird T.N. Little (Eds) Proceedings of Western Australian Conference of Mining Geomechanics Curtin University WASM Kalgoorlie, Western Australia 235–246
L.N. Germanivich A.V. Dyskin (1994) ArticleTitleVirial expansions in problems of effective characteristics Part I. General concepts. J. Mech. Compos. Mater 30 IssueID2 222–237
Mühlhaus H.-B., Dyskin A., Pasternak E., Adhikary D. (1999). Non-standard continuum theories in geomechanics: theory, experiments and analysis. In: Picu R.C., Kremple E. (ed). Proceedings of the Fourth International Conference on Constitutive Laws for Engineering Materials. Troy New York, Rensselaer Polytechnic Institute, pp. 321–324
R.D. Mindlin H.F. Tiersten (1962) ArticleTitleEffects of couple-stresses in linear elasticity Arch. Ration. Mech. Anal 11 415–448
A.C. Eringen (1966) ArticleTitleLinear theory of micropolar elasticity J. Math. Mech 15 909–923
A.C. Eringen C.B. Kafadar (1976) Polar field theories A.C. Eringen (Eds) Continuum Physics, Volume IV, Part I Academic Press New York 4–73
P. Germain (1973) ArticleTitleLa méthode des puissances virtuelles en mécanique des milieux continues. Première partie. Théorie. du second gradient J. Mécanique 12 235–274
P. Germain (1973) ArticleTitleThe method of virtual power in continuum mechanics. Part 2 Microstructure SIAM J. Appl. Math 25 556–575
G.A. Maugin (1980) ArticleTitleThe method of virtual power in continuum mechanics: application to coupled fields Acta Mech 35 1–70
I.A. Kunin (1982) Elastic Media with Microstructure 1 One-dimensional Models Springer-Verlag Berlin, Heidelberg, New York 291
E. Kröner (1970) The problem of non-locality in the mechanics of solids: review of the present status J.A. Simmons R. Wit Particlede R. Bullough (Eds) Fundamental Aspects of Dislocation Theory. National Bureau of Standards Special Publication 317. Vol. II National Bureau of Standards Washington 729–736
E. Kröner B.K. Datta (1970) Non-local theory of elasticity for a finite inhomogeneous medium – A derivation from lattice theory J.A. Simmons R. Wit Particlede R. Bullough (Eds) Fundamental Aspects of Dislocation Theory. National Bureau of Standards Special Publication 317. Vol. II National Bureau of Standards Washington 737–746
I.A. Kunin A.M. Waisman (1970) On problems of the non-local theory of elasticity J.A. Simmons R. Wit Particlede R. Bullough (Eds) Fundamental Aspects of Dislocation Theory. National Bureau of Standards Special Publication 317 Vol. II National Bureau of Standards Washington 747–759
I.A. Kunin (1983) Elastic Media with Microstructure I1 Three-dimensional Models Springer-Verlag Berlin, Heidelberg, New York 272
A.C. Eringen (1987) Non-local continuum description of lattice dynamics and application J. Chandra R.P. Srivastav (Eds) Constitutive Models of Deformation SIAM Philadelphia 59–80
A.C. Eringen (1976) Non-local polar field theories A.C. Eringen (Eds) Continuum Physics. Volume IV Part III Academic Press New York 205–264
A.C. Eringen (1978) Non-local continuum mechanics and some application A.O. Barut (Eds) Non-linear Equations in Physics and Mathematics D. Reidel Publishing Company Dordrecht 271–318
R. Borst Particlede A. Benallal R.H.J. Peerlings (1997) On gradient-enhanced damage theories N.A. Fleck A.C.F. Cocks (Eds) IUTAM Symposium on Mechanics of Granular and Porous Materials Kluwer Academic Publishers Dordrecht 215–226
G. Pijaudier-Cabot Z.P. Bazant (1987) ArticleTitleNon-local damage theory J. Engng. Mech 113 1512–1533
Z.P. Bazant G. Pijaudier-Cabot (1988) ArticleTitleNon-local continuum damage, localization instability and convergence J. Appl. Mech 55 287–293
G. Pijaudier-Cabot (1995) Non-local damage H.-B. Mühlhaus (Eds) Continuum Models for Materials with Microstructure. (Chapter 4) John Wiley & Sons Chichester, New York, Brisbane, Toronto, Singapore 105–143
H.-B. Mühlhaus (1993) Continuum models for layered and blocky rock J.A. Hudson (Eds) Comprehensive Rock Engineering: Principles, Practice & Projects. Invited Chapter for Vol. II: Analysis and Design Methods Pergamon Press Oxford, New York 209–230
N.V. Zvolinskii K.N. Shkhinek (1984) ArticleTitleContinual model of laminar elastic medium Mech. Solids 19 IssueID1 1–9
D.P Adhikary A.V. Dyskin (1997) ArticleTitleA Cosserat continuum model for layered materials Comp. Geotechn 20 15–45
H.-B. Mühlhaus (1995) A relative gradient model for laminated materials H.-B. Mühlhaus (Eds) Continuum Models for Materials with Microstructure. (Chapter 13) John Wiley & Sons Chichester, New York, Brisbane, Toronto, Singapore 451–482
H.-B. Mühlhaus P. Hornby (1998) ArticleTitleA relative gradient theory for layered materials J. Phys. IV France 8 269–276
H.-B. Mühlhaus P. Hornby (1998) A beam theory gradient continua R. Borst Particlede E. Giessen Particlevan der (Eds) Material Instabilities in Solids. (Chapter 32) John Wiley & Sons Chichester, New York 521–532
J. Sulem H.-B. Mühlhaus (1997) ArticleTitleA continuum model for periodic two-dimensional block structures Mech. Cohesive-Frictional Mater 2 31–46
H.-B. Mühlhaus I. Vardoulakis (1987) ArticleTitleThe thickness of shear bands in granular materials Géotechnique 37 271–283
H.-B. Mühlhaus R. Borst Particlede E.C. Aifantis (1991) Constitutive models and numerical analyses for inelastic materials with microstructure G. Beer J.R. Booker J. Carter (Eds) Computing Methods and Advances in Geomechanics Balkema Rotterdam 377–385
C.S Chang L. Ma (1992) ArticleTitleElastic material constants for isotropic granular solids with particle rotation Int. J. Solids Struct 29 1001–1018
H.-B. Mühlhaus F. Oka (1996) ArticleTitleDispersion and wave propagation in discrete and continuous models for granular materials Int. J. Solids Struct 33 2841–2858
H.-B. Mühlhaus P. Hornby (1997) On the reality of antisymmetric stresses in fast granular flows N.A. Fleck A.C.F. Cocks (Eds) IUTAM Symposium on Mechanics of Granular and Porous Materials Kluwer Academic Publishers Dordrecht 299–311
G.N. Wells L.J. Sluys (2001) Partition-of-unity for fracture of brittle materials H.-B. Mühlhaus A.V. Dyskin E. Pasternak (Eds) Bifurcation and Localization in Geomechanics Swets & Zeitlinger Lisse 169–176
R. Hill (1963) ArticleTitleElastic properties of reinforced solids: some theoretical principles J. Mech. Phys. Solids 11 357–372
T. Mori K. Tanaka (1973) ArticleTitleAverage stress in matrix and average elastic energy of materials with misfitting inclusions Acta Metal 21 571–574
R.M. Christensen (1979) Mechanics of Composite Materials John Wiley & Sons New York 348
Z. Hashin (1988) ArticleTitleThe differential scheme and its application to cracked materials J. Mech. Phys. Solids 36 719–734
M. Kachanov (1992) ArticleTitleEffective elastic properties of cracked solids: critical review of some basic concepts Appl. Mech. Rev 45 IssueID8 304–335
Nemat-Nasser S., Horii H. (1993). Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam, London, New York, Tokyo, 687 pp
D. Krajcinovic (1996) Damage Mechanics Elsevier Amsterdam, Lausanne, New York, Oxford, Shannon, Tokyo 761
B. Cambou (1998) Micromechanical approach in granular materials B. Cambou (Eds) Behaviour of Granular Materials. CISM Courses and Lectures No. 385 Springer Wein, New York 171–216
G.N. Savin L.P. Khoroshun (1972) The problem of elastic constants of stoichastically reinforced materials. Mekhanika sploshnoy sredy i rodstvennye problemy analiza. [Mechanics of continuous media and related problems of analysis] Nauka Press Moscow 437–444
L.P. Khoroshun (1978) ArticleTitleMethods of theory of random functions in problems of macroscopic properties of microinhomogeneous media Soviet Appl. Mech 14 113–124
J. Duffy R.D. Mindlin (1957) ArticleTitleStress-strain relation and vibrations of granular medium J. Appl. Mech 24 585–593
H. Deresiewicz (1958) ArticleTitleStress-strain relations for a simple model of a granular medium J. Appl. Mech 25 402–406
S.A. Meguid A.L. Kalamkarov (1994) ArticleTitleAsymptotic homogenization of elastic materials with a regular structure Int. J. Solids Struct 31 303–316
G.A. Vanin (1985) Micromechanics of Composite Materials Naukova Dumka Kiev 302
G.A. Maugin (1999) Non-linear Waves in Elastic Crystals Oxford University Press Oxford 314
A.S.J. Suiker R. Borst Particlede C.S. Chang (2000) Micro-mechanically based higher-order continuum models for granular materials D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin 249–274
A.S.J. Suiker R. Borst Particlede C.S. Chang (2001) ArticleTitleMicro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory Acta Mech 149 161–180
A.S.J. Suiker R. Borst Particlede C.S. Chang (2001) ArticleTitleMicro-mechanical modelling of granular material. Part 2: Plane wave propagation in finite media Acta Mech 149 181–200
M. Satake (1997) Three-dimensional discrete mechanics of granular materials N.A. Fleck A.C.F. Cocks (Eds) IUTAM Symposium on Mechanics of Granular and Porous Materials Kluwer Academic Publishers Dordrecht 193–202
U. Tüzün D.M. Heyes (1997) Distinct element simulations and dynamic microstructural imaging of slow shearing granular flows N.A. Fleck A.C.F. Cocks (Eds) IUTAM Symposium on Mechanics of Granular and Porous Materials Kluwer Academic Publishers Dordrecht 263–274
C. Thornton (2000) Microscopic approach contributions to constitutive modelling D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin 193–208
H.-B. Mühlhaus L. Moresi H. Sakaguchi (2000) Discrete and continuum modelling of granular materials D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin 209–224
G. Gudehus (1996) ArticleTitleA comprehensive constitutive equation for granular materials Soils and Foundations 36 1–12
P.J. Digby (1981) ArticleTitleThe effective elastic moduli of porous granular rocks J. Appl. Mech 16 803–808
K. Walton (1987) ArticleTitleThe effective elastic modulus of a random packing of spheres J. Mech. Phys. Solids 35 213–226
R.J. Bathurst L. Rothenberg (1988) ArticleTitleMicromechanical aspects of isotropic granular assemblies with linear contact interactions J. Appl. Mech 55 17–23
C.S. Chang (1988) Micromechanical modelling of constitutive relations for granular material M. Satake J.T. Jenkins (Eds) Micromechanics of Granular Materials Elsevier Science Publishers B.V. Amsterdam 271–279
J.T. Jenkins (1988) Volume change in small strain axisymmetric deformations of a granular material M. Satake J.T. Jenkins (Eds) Micromechanics of Granular Materials Elsevier Science Publishers B.V. Amsterdam 245–252
B. Cambou F. Dedecker M. Chaze (2000) Relevant local variables for the change of scale in granular materials D. Kolymbas (Eds) Constitutive Modelling of Granular Materials Springer Berlin 275–290
N.A. Fleck A.C.F. Cocks (Eds) (1997) IUTAM Symposium on Mechanics of Granular and Porous Materials Kluwer Academic Publishers Dordrecht 450
E. Pasternak H.-B. Mühlhaus (2001) Non-classical continua for modelling of granulate materials J.P. Denier E.O. Tuck (Eds) The 2001 ANZIAM Applied Mathematics Conference Abstracts University of Adelaide Barossa Valley, South Australia 64
E. Pasternak H.-B. Mühlhaus (2001) Cosserat continuum modelling of granulate materials S. Valliappan N. Khalili (Eds) Computational Mechanics – New Frontiers for New Millennium Elsevier Science Amsterdam 1189–1194
E. Pasternak H.-B. Mühlhaus (2002) Large deformation Cosserat continuum modelling of granulate materials L. Zhang L. Tong J. Gal (Eds) Applied Mechanics. Progress and Application. ACAM 2002. The Third Australasian Congress on Applied Mechanics World Scientific New Jersey, London, Singapore 389–396
E. Pasternak H.-B. Mühlhaus (2000) Cosserat and non-local continuum models for problems of wave propagation in fractured materials X.L. Zhao R.H. Grzebieta (Eds) Structural Failure and Plasticity (IMPLAST2000) Pergamon Amsterdam 741–746
E. Pasternak H.-B. Mühlhaus (2002) A non-local Cosserat model of heterogeneous materials: 1D structures A.V. Dyskin X. Hu E. Sahouryeh (Eds) Structural Integrity and Fracture Swets & Zeitlinger Lisse 107–114
K.F. Graff (1975) Wave Motion in Elastic Solids Dover Publications New York 649
J.-P. Kahane (1985) Some Random Series of Functions, 2nd edition Cambridge University Press Cambridge 305