General breather and rogue wave solutions to the complex short pulse equation

Physica D: Nonlinear Phenomena - Tập 439 - Trang 133360 - 2022
Bao-Feng Feng1, Ruyun Ma2, Yujuan Zhang2
1School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, United States of America
2School of Mathematics and Statistics, Xidian University, Xi’an 710126, China

Tài liệu tham khảo

Kharif, 2009 Solli, 2007, Optical rogue waves, Nature, 450, 1054, 10.1038/nature06402 Höhmann, 2010, Freak waves in the linear regime: A microwave study, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.093901 Montina, 2009, Non-Gaussian statistics and extreme waves in a nonlinear optical cavity, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.173901 Bludov, 2009, Matter rogue waves, Phys. Rev. A, 80, 10.1103/PhysRevA.80.033610 Bludov, 2010, Vector rogue waves in binary mixtures of Bose–Einstein condensates, Eur. Phys. J. Spec. Top., 185, 169, 10.1140/epjst/e2010-01247-6 Ganshin, 2008, Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.065303 Moslem, 2011, Langmuir rogue waves in electron-positron plasmas, Phys. Plasmas, 18 Bailung, 2011, Observation of peregrine solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.255005 Shats, 2010, Capillary rogue waves, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.104503 Akhmediev, 2009, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373, 675, 10.1016/j.physleta.2008.12.036 Akhmediev, 2009, Extreme waves that appear from nowhere: On the nature of rogue waves, Phys. Lett. A, 373, 2137, 10.1016/j.physleta.2009.04.023 Peregrine, 1983, Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. B, 25, 16, 10.1017/S0334270000003891 Akhmediev, 2009, Rogue waves and rational solutions of the nonlinear Schrödinger equation, Phys. Rev. E, 80, 10.1103/PhysRevE.80.026601 Kedziora, 2012, Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits, Phys. Rev. E, 85, 10.1103/PhysRevE.85.066601 Ankiewicz, 2011, Rogue wave triplets, Phys. Lett. A, 375, 2782, 10.1016/j.physleta.2011.05.047 Kedziora, 2011, Circular rogue wave clusters, Phys. Rev. E, 84, 10.1103/PhysRevE.84.056611 Dubard, 2010, On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation, Eur. Phys. J. Spec. Top., 185, 247, 10.1140/epjst/e2010-01252-9 Dubard, 2011, Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation, Nat. Hazards Earth Syst. Sci., 11, 667, 10.5194/nhess-11-667-2011 Gaillard, 2011, Families of quasi-rational solutions of the NLS equation and multi-rogue waves, J. Phys. A: Math. Theor., 44, 10.1088/1751-8113/44/43/435204 Guo, 2012, Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85, 10.1103/PhysRevE.85.026607 Ohta, 2012, General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation, Proc. R. Soc. London. Sect. A, 468, 1716 Ankiewicz, 2010, Rogue waves and rational solutions of the Hirota equation, Phys. Rev. E, 81, 10.1103/PhysRevE.81.046602 He, 2013, Generating mechanism for higher-order rogue waves, Phys. Rev. E, 87, 10.1103/PhysRevE.87.052914 Mu, 2016, Dynamic patterns of high-order rogue waves for Sasa–Satsuma equation, Nonlin. Anal.: Real World Appl., 31, 179, 10.1016/j.nonrwa.2016.01.001 Ling, 2016, Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation, Physica D, 327, 13, 10.1016/j.physd.2016.03.012 Wang, 2017, Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model, Commun. Nonlinear Sci. Numer. Simul., 42, 502, 10.1016/j.cnsns.2016.06.011 Chen, 2015, Rational solutions to two-and one-dimensional multicomponent Yajima-Oikawa systems, Phys. Lett. A, 379, 1510, 10.1016/j.physleta.2015.02.040 Bludov, 2009, Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides, Phys. Rev. E, 34, 2015 Ankiewicz, 2010, Discrete rogue waves of the Ablowitz-Ladik and Hirota equations, Phys. Rev. E, 82, 10.1103/PhysRevE.82.026602 Ohta, 2014, General rogue waves in the focusing and defocusing Ablowitz-Ladik equations, J. Phys. A: Math. Theor., 47, 10.1088/1751-8113/47/25/255201 Yan, 2010, Nonautonomous rogons in the inhomogeneous nonlinear Schrödinger equation with variable coefficients, Phys. Lett. A, 374, 672, 10.1016/j.physleta.2009.11.030 Yan, 2010, Three-dimensional rogue waves in nonstationary parabolic potentials, Phys. Rev. E, 82, 10.1103/PhysRevE.82.036610 Yan, 2013, Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients, J. Opt., 15, 10.1088/2040-8978/15/6/064012 Wen, 2015, Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation, Phys. Rev. E, 92, 10.1103/PhysRevE.92.012917 Yan, 2015, Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross–Pitaevskii equations with varying potentials, Nonlinear Dyn., 79, 2515, 10.1007/s11071-014-1829-8 Yang, 2015, Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation, Chaos, 25, 10.1063/1.4931594 Wen, 2016, Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential, Chaos, 26, 10.1063/1.4954767 Wen, 2017, Higher-order rational solitons and rogue-like wave solutions of the (2+1)-dimensional nonlinear fluid mechanics equations, Commun. Nonlinear Sci. Numer. Simul., 43, 311, 10.1016/j.cnsns.2016.07.020 Chabchoub, 2013, Observation of rogue wave triplets in water waves, Phys. Lett. A, 377, 2590, 10.1016/j.physleta.2013.07.027 Chabchoub, 2012, Observation of a hierarchy of up to fifth-order rogue waves in a water tank, Phys. Rev. E, 86, 10.1103/PhysRevE.86.056601 Feng, 2015, Complex short pulse and coupled complex short pulse equations, Physica D, 297, 10.1016/j.physd.2014.12.002 Feng, 2016, A defocusing complex short pulse equation and its multi-dark soliton solution by Darboux transformation, Phys. Rev. E, 93, 10.1103/PhysRevE.93.052227 Schäfer, 2004, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D, 196, 90, 10.1016/j.physd.2004.04.007 Dimakis, 2010, Bidifferential calculus approach to AKNS hierarchies and their solutions, SIGMA, 6, 055 Matsuno, 2011, A novel multi-component generalization of the short pulse equation and its multisoliton solutions, J. Math. Phys., 52, 10.1063/1.3664904 Shen, 2016, From the real and complex coupled dispersionless equations to the real and complex short pulse equations, Stud. Appl. Math., 136, 64, 10.1111/sapm.12092 Xu, 2021, On the double-pole solutions of the complex short-pulse equation, Modern Phys. Lett. B, 35, 10.1142/S0217984921501293 Mee, 2020, Complex short-pulse solutions by gauge transformation, J. Geom. Phys., 148 Prinari, 2020, Inverse scattering transform for the complex short-pulse equation by a Riemann Hilbert approach, Eur. Phys. J. Plus, 135, 717, 10.1140/epjp/s13360-020-00714-z Xu, 2020, Long-time asymptotic behavior for the complex short pulse equation, J. Diff. Equ., 269, 10322, 10.1016/j.jde.2020.07.009 Feng, 2016, Geometric formulation and multi-dark soliton solution to the defocusing complex short pulse equation, Stud. Appl. Math., 138, 343, 10.1111/sapm.12159 Ohta, 2012, Rogue waves in the Davey–Stewartson I equation, Phys. Rev. E, 86, 10.1103/PhysRevE.86.036604 Ohta, 2013, Dynamics of rogue waves in the Davey–Stewartson II equation, J. Phys. A, 46, 10.1088/1751-8113/46/10/105202 Chen, 2018, General high-order rogue wave of the (1+1)-dimensional Yajima-Oikawa system, J. Phys. Soc. Japan, 87, 10.7566/JPSJ.87.094007 Chen, 2019, High-order rogue waves of a long wave-short model of Newell type, Phys. Rev. E, 100, 10.1103/PhysRevE.100.052216 Yang, 2020, Rogue waves in the generalized derivative nonlinear Schrd̈inger equations, J. Nonlinear Sci., 30, 3027, 10.1007/s00332-020-09643-8 Yang, 2021, General rogue waves in the three-wave resonant interaction systems, IMA J. Appl. Math., 86, 378, 10.1093/imamat/hxab005 Yang, 2020, General rogue waves in the Boussinesq equation, J. Phys. Soc. Japan, 89, 10.7566/JPSJ.89.024003 Yang, 2021, Universal rogue wave patterns associated with the Yablonskii-Vorob’ev polynomial hierarchy, Physica D, 425, 10.1016/j.physd.2021.132958 Hirota, 2004 Jimbo, 1983, Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19, 943, 10.2977/prims/1195182017 Miyake, 1990, A representation of solutions for the KP hierarchy and its algebraic structure, J. Phys. Soc. Jpn., 59, 48, 10.1143/JPSJ.59.48 Feng, 2014, Self-adaptive moving mesh schemes for short pulse type equations and their lax pairs, Pacific J. Math. Ind., 6, 1, 10.1186/s40736-014-0008-7 Feng, 2015, Integrable discretization of a multi-component short pulse equation, J. Math. Phys., 56, 10.1063/1.4916895 Feng, 2021, A focusing and defocusing semi-discrete complex short pulse equation and its various soliton solutions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 477 Yang, 2018, A coupled focusing-defocusing complex short pulse equation: Multisoliton, breather, and rogue wave, Chaos, 28, 10.1063/1.5021523 Wang, 2018, Soliton interactions and modulation instability for the N-coupled complex short pulse equations in an optical fiber, Modern Phys. Lett. B, 32 Gkogkou, 2022, Inverse scattering transform for the complex coupled short-pulse equation, Stud. Appl. Math., 148, 918, 10.1111/sapm.12463