Gây mê toàn thân chèn ép đường ruột: mối quan hệ độc hại với rối loạn hệ vi sinh và suy chức năng nhận thức

Psychopharmacology - Tập 239 - Trang 709-728 - 2022
Lidan Liu1, Lihua Shang1, Dongxue Jin1, Xiuying Wu1, Bo Long1
1Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China

Tóm tắt

Rối loạn nhận thức sau phẫu thuật (PND) là một kết quả phổ biến sau phẫu thuật, ảnh hưởng đến gần một phần ba bệnh nhân cao tuổi, và nó liên quan đến tỷ lệ mắc bệnh cao cũng như tăng nguy cơ phát triển bệnh Alzheimer. PND được đặc trưng bởi sự suy giảm nhận thức có thể biểu hiện cấp tính dưới dạng hoang tưởng sau phẫu thuật (POD) hoặc sau khi xuất viện dưới dạng rối loạn chức năng nhận thức sau phẫu thuật (POCD). Mặc dù POD và POCD là những tình trạng lâm sàng khác nhau, nhưng sự phát triển của chúng dường như được trung gian bởi một phản ứng viêm toàn thân do chấn thương phẫu thuật gây ra, dẫn đến rối loạn chức năng của hàng rào máu-não và tạo điều kiện cho sự xuất hiện của viêm thần kinh. Các nghiên cứu gần đây đã gợi ý rằng thành phần vi khuẩn đường ruột có thể đóng vai trò quan trọng trong sự phát triển của PND bằng cách điều chỉnh nguy cơ thiết lập viêm thần kinh. Thực tế, việc điều chỉnh thành phần hệ vi khuẩn đường ruột bằng pre- và probiotics dường như có hiệu quả trong việc phòng ngừa và điều trị PND ở động vật. Điều thú vị là, thuốc gây mê tổng quát dường như có trách nhiệm lớn trong những thay đổi về thành phần vi khuẩn đường ruột sau phẫu thuật và, do đó, có thể là một yếu tố quan trọng trong quá trình khởi phát PND. Khái niệm này đại diện cho một cột mốc quan trọng trong việc hiểu rõ về quá trình sinh bệnh của PND và có thể mở ra những cơ hội mới cho việc phát triển các chiến lược phòng ngừa hoặc giảm nhẹ đối với sự phát triển của những tình trạng này. Mục tiêu của bài đánh giá này là thảo luận về cách các thuốc gây mê được sử dụng trong gây mê toàn thân có thể tương tác và thay đổi sự phân bố vi khuẩn đường ruột và góp phần vào sự phát triển PND bằng cách tạo điều kiện cho sự xuất hiện của viêm thần kinh.

Từ khóa

#Rối loạn nhận thức sau phẫu thuật #gây mê toàn thân #vi khuẩn đường ruột #viêm thần kinh #bệnh Alzheimer

Tài liệu tham khảo

Ailiani AC, Neuberger T, Brasseur JG et al (2014) Quantifying the effects of inactin vs isoflurane anesthesia on gastrointestinal motility in rats using dynamic magnetic resonance imaging and spatio-temporal maps. Neurogastroenterol Motil 26:1477–1486. https://doi.org/10.1111/nmo.12410 Alverdy J, Holbrook C, Rocha F et al (2000) Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 232:480–489. https://doi.org/10.1097/00000658-200010000-00003 Arnaud AP, Hascoet J, Berneau P et al (2020) A piglet model of iatrogenic rectosigmoid hypoganglionosis reveals the impact of the enteric nervous system on gut barrier function and microbiota postnatal development. J Pediatr Surg. https://doi.org/10.1016/j.jpedsurg.2020.06.018 Askarova S, Umbayev B, Masoud AR et al (2020) The links between the gut microbiome, aging, modern lifestyle and Alzheimer’s disease. Front Cell Infect Microbiol 10:1–12. https://doi.org/10.3389/fcimb.2020.00104 Aviello G, Knaus UG (2018) NADPH oxidases and ROS signaling in the gastrointestinal tract review-article. Mucosal Immunol 11:1011–1023. https://doi.org/10.1038/s41385-018-0021-8 Barbara G, Feinle-Bisset C, Ghoshal UC et al (2016) The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology 150:1305-1318.e8. https://doi.org/10.1053/j.gastro.2016.02.028 Bátai I, Kerényi M, Tekeres M (1999) The impact of drugs used in anaesthesia on bacteria. Eur J Anaesthesiol 16:425–440. https://doi.org/10.1046/j.1365-2346.1999.00498.x Baümler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93. https://doi.org/10.1038/nature18849 Berger M, Nadler JW, Browndyke J et al (2015) Postoperative cognitive dysfunction. Minding the gaps in our knowledge of a common postoperative complication in the elderly. Anesthesiol Clin 33:517–550. https://doi.org/10.1016/j.anclin.2015.05.008 Besnier E, Clavier T, Compere V (2017) The hypothalamic-pituitary-adrenal axis and anesthetics: a review. Anesth Analg 124:1181–1189. https://doi.org/10.1213/ANE.0000000000001580 Biaggini K, Barbey C, Borrel V et al (2015) The pathogenic potential of Pseudomonas fluorescens MFN1032 on enterocytes can be modulated by serotonin, substance P and epinephrine. Arch Microbiol 197:983–990. https://doi.org/10.1007/s00203-015-1135-y Bocquet N, Prado De Carvalho L, Cartaud J et al (2007) A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445:116–119. https://doi.org/10.1038/nature05371 Bonaz B, Bazin T, Pellissier S (2018) The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 12:1–9. https://doi.org/10.3389/fnins.2018.00049 Bonaz BL, Bernstein CN (2013) Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144:36–49. https://doi.org/10.1053/j.gastro.2012.10.003 Borre YE, Moloney RD, Clarke G et al (2014) Microbial endocrinology: the microbiota-gut-brain axis in health and disease. Springer, New York, New York, NY Bouché N, Lacombe B, Fromm H (2003) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610. https://doi.org/10.1016/j.tcb.2003.10.001 Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine 6:1–12. https://doi.org/10.1126/scitranslmed.3009759 Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psych 9:44. https://doi.org/10.3389/fpsyt.2018.00044 Brohan J, Goudra BG (2017) The role of GABA receptor agonists in anesthesia and sedation. CNS Drugs 31:845–856. https://doi.org/10.1007/s40263-017-0463-7 Cao H, Liu X, An Y et al (2017) Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-10835-8 Chamberlain M, Koutsogiannaki S, Schaefers M et al (2017) The differential effects of anesthetics on bacterial behaviors. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0170089 Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental and Molecular Medicine 50https://doi.org/10.1038/s12276-018-0126-x Chivero ET, Ahmad R, Thangaraj A et al (2019) Cocaine induces inflammatory gut milieu by compromising the mucosal barrier integrity and altering the gut microbiota colonization. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-48428-2 Chuzel T, Sanchez V, Vandamme M et al (2015) Impact of anesthesia protocols on in vivo bioluminescent bacteria imaging results. PLoS ONE 10:1–10. https://doi.org/10.1371/journal.pone.0134048 Coates MD, Mahoney CR, Linden DR et al (2004) Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 126:1657–1664. https://doi.org/10.1053/j.gastro.2004.03.013 Cremer J, Segota I, Yang CY et al (2016) Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel. Proc Natl Acad Sci USA 113:11414–11419. https://doi.org/10.1073/pnas.1601306113 Cruz FF, Rocco PRM, Pelosi P (2017) Anti-inflammatory properties of anesthetic agents. Critical Care 21https://doi.org/10.1186/s13054-017-1645-x Cryan JF, O’riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013. https://doi.org/10.1152/physrev.00018.2018 Cussotto S, Strain CR, Fouhy F et al (2019) Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology 236:1671–1685. https://doi.org/10.1007/s00213-018-5006-5 Daiello LA, Racine AM, Yun Gou R et al (2019) Postoperative delirium and postoperative cognitive dysfunction: overlap and divergence. Anesthesiology 131:477–491. https://doi.org/10.1097/ALN.0000000000002729 Diez-Gutiérrez L, San Vicente L, Luis LJ et al (2020) Gamma-aminobutyric acid and probiotics: multiple health benefits and their future in the global functional food and nutraceuticals market. Journal of Functional Foods 64:103669. https://doi.org/10.1016/j.jff.2019.103669 Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019) Role of the microbiome in human development. Gut 68:1108–1114. https://doi.org/10.1136/gutjnl-2018-317503 Dryn D, Luo J, Melnyk M et al (2018) Inhalation anaesthetic isoflurane inhibits the muscarinic cation current and carbachol-induced gastrointestinal smooth muscle contractions. Eur J Pharmacol 820:39–44. https://doi.org/10.1016/j.ejphar.2017.11.044 El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bulletin of the National Research Centre 43https://doi.org/10.1186/s42269-019-0227-2 Falony G, Joossens M, Vieira-Silva S et al (2016) Population-level analysis of gut microbiome variation. Science (new York, NY) 352:560–564. https://doi.org/10.1126/science.aad3503 Farin HF, Karthaus WR, Kujala P et al (2014) Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ. J Exp Med 211:1393–1405. https://doi.org/10.1084/jem.20130753 Fortea M, Albert-Bayo M, Abril-Gil M, et al (2021) Present and future therapeutic approaches to barrier dysfunction. Front Nutr 8:718093. https://doi.org/10.3389/fnut.2021.718093 Freestone PPE, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64. https://doi.org/10.1016/j.tim.2007.11.005 Fülling C, Dinan TG, Cryan JF (2019) Gut microbe to brain signaling: what happens in vagus…. Neuron 101:998–1002. https://doi.org/10.1016/j.neuron.2019.02.008 Fung C, vandenBerghe P (2020) Functional circuits and signal processing in the enteric nervous system. Cellular and Molecular Life Sciences 77:4505–4522. https://doi.org/10.1007/s00018-020-03543-6 Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155. https://doi.org/10.1038/nn.4476 Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294. https://doi.org/10.1038/nrgastro.2012.32 Garud NR, Good BH, Hallatschek O, Pollard KS (2019) Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol 17:e3000102. https://doi.org/10.1371/journal.pbio.3000102 Gheorghe CE, Martin JA, Manriquez FV et al (2019) Focus on the essentials: tryptophan metabolism and the microbiome-gut-brain axis. Curr Opin Pharmacol 48:137–145. https://doi.org/10.1016/j.coph.2019.08.004 Golubeva AV, Joyce SA, Moloney G et al (2017) Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24:166–178. https://doi.org/10.1016/j.ebiom.2017.09.020 Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20:95–112. https://doi.org/10.1038/s41577-019-0215-7 Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94. https://doi.org/10.3389/fphys.2011.00094 Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Algy Clin Immunol 124:3–20. https://doi.org/10.1016/j.jaci.2009.05.038 Gulam D, Dmitrović B, Kvolik S et al (2011) Integrity of gut mucosa during anaesthesia in major abdominal surgery. Coll Antropol 35:445–451 Guo N, Zhang Z, Han C et al (2021) Effects of continuous intravenous infusion of propofol on intestinal flora in rats. Biomed Pharmacother 134:111080. https://doi.org/10.1016/j.biopha.2020.111080 Guthrie GD, Nicholson-Guthrie CS, Leary HL (2000) A bacterial high-affinity GABA binding protein: isolation and characterization. Biochem Biophys Res Commun 268:65–68. https://doi.org/10.1006/bbrc.1999.1960 Han C, Zhang Z, Guo N et al (2021) Effects of sevoflurane inhalation anesthesia on the intestinal microbiome in mice. Front Cell Infect Microbiol 11:1–13. https://doi.org/10.3389/fcimb.2021.633527 Han D, Li Z, Liu T, et al (2020) Prebiotics regulation of intestinal microbiota attenuates cognitive dysfunction induced by surgery stimulation in APP/PS1 mice. Aging and Disease 11:1029–1045. https://doi.org/10.14336/AD.2020.0106 Han L, Fuqua S, Li Q et al (2016) Propofol-induced inhibition of catecholamine release is reversed by maintaining calcium influx. Anesthesiology 124:878–884. https://doi.org/10.1097/ALN.0000000000001015 Hara M, Zhou ZY, Hemmings HC (2016) α2-adrenergic receptor and isoflurane modulation of presynaptic Ca2+ influx and exocytosis in hippocampal neurons. Anesthesiology 125:535–546. https://doi.org/10.1097/ALN.0000000000001213 Hasibeder W (2010) Gastrointestinal microcirculation: still a mystery? Br J Anaesth 105:393–396. https://doi.org/10.1093/bja/aeq236 Hemmings HC (2009) Molecular targets of general anesthetics in the nervous system. Suppressing the Mind. Humana Press, Totowa, NJ, pp 11–31 Hemmings HC, Riegelhaupt PM, Kelz MB et al (2019) Towards a comprehensive understanding of anesthetic mechanisms of action: a decade of discovery. Trends Pharmacol Sci 40:464–481. https://doi.org/10.1016/j.tips.2019.05.001 Hilf RJC, Dutzler R (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457:115–118. https://doi.org/10.1038/nature07461 Houlden A, Goldrick M, Brough D et al (2016) Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20. https://doi.org/10.1016/j.bbi.2016.04.003 Huang H, Benzonana LL, Zhao H et al (2014) Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br J Cancer 111:1338–1349. https://doi.org/10.1038/bjc.2014.426 Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120. https://doi.org/10.1038/nrmicro1836 Hyland NP, Cryan JF (2010) A gut feeling about GABA: focus on GABAB receptors. Frontiers in Pharmacology OCT:1–9. https://doi.org/10.3389/fphar.2010.00124 Inada T, Yamanouchi Y, Jomura S et al (2004) Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia 59:954–959. https://doi.org/10.1111/j.1365-2044.2004.03837.x Inouye SK, Westendorp RGJ, Saczynski JS (2014) Delirium in elderly people. The Lancet 383:911–922. https://doi.org/10.1016/S0140-6736(13)60688-1 Iqbal F, Thompson AJ, Riaz S et al (2019) Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 122:760–787. https://doi.org/10.1152/jn.00210.2019 Iwasaki M, Edmondson M, Sakamoto A, Ma D (2015) Anesthesia, surgical stress, and “long-term” outcomes. Acta Anaesthesiol Taiwan 53:99–104. https://doi.org/10.1016/j.aat.2015.07.002 Jacobson A, Yang D, Vella M, Chiu IM (2021) The intestinal neuro-immune axis : crosstalk between neurons, immune cells, and microbes. Mucosal Immunology 1–11https://doi.org/10.1038/s41385-020-00368-1 Jiang XL, Gu XY, Zhou XX et al (2019) Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain Behav Immun 80:605–615. https://doi.org/10.1016/j.bbi.2019.05.006 Kałużna-Czaplińska J, Gątarek P, Chirumbolo S et al (2019) How important is tryptophan in human health? Crit Rev Food Sci Nutr 59:72–88. https://doi.org/10.1080/10408398.2017.1357534 Kendall MM, Sperandio V (2016) What a dinner party! mechanisms and functions of interkingdom signaling in host-pathogen associations. mBio 7:1–14. https://doi.org/10.1128/mBio.01748-15 Kim JJ, Gharpure A, Teng J et al (2020) Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585:303–308. https://doi.org/10.1038/s41586-020-2654-5 Koutsogiannaki S, Schaefers MM, Okuno T et al (2017) Prolonged exposure to volatile anesthetic isoflurane worsens the outcome of polymicrobial abdominal sepsis. Toxicol Sci 156:402–411. https://doi.org/10.1093/toxsci/kfw261 Kurosawa S, Kato M (2008) Anesthetics, immune cells, and immune responses. J Anesth 22:263–277. https://doi.org/10.1007/s00540-008-0626-2 Leslie JB, Viscusi ER, Pergolizzi JV, Panchal SJ (2011) Anesthetic routines: the anesthesiologist’s role in GI recovery and postoperative ileus. Advances in Preventive Medicine 2011:1–10. https://doi.org/10.4061/2011/976904 Li GD, Chiara DC, Sawyer GW et al (2006) Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 26:11599–11605. https://doi.org/10.1523/JNEUROSCI.3467-06.2006 Lian X, Zhu Q, Sun L, Cheng Y (2021) Effect of anesthesia/surgery on gut microbiota and fecal metabolites and their relationship with cognitive dysfunction. Frontiers in Systems Neuroscience 15https://doi.org/10.3389/fnsys.2021.655695 Liufu N, Liu L, Shen S, et al (2020) Anesthesia and surgery induce age-dependent changes in behaviors and microbiota. Aging 12:1965–1986. https://doi.org/10.18632/aging.102736 Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Medicine 8:1–11. https://doi.org/10.1186/s13073-016-0307-y Lukanc B, Butinar J, Svete AN et al (2017) The influence of isoflurane anaesthesia on intestinal permeability in healthy dogs. Slov Vet Res 54:117–123 Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379. https://doi.org/10.1056/nejmra1600266 Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33:574–581. https://doi.org/10.1002/bies.201100024 Maier L, Pruteanu M, Kuhn M et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628. https://doi.org/10.1038/nature25979 Mancini A, Carafa I, Franciosi E et al (2019) In vitro probiotic characterization of high GABA producing strain Lactobacillus brevis DSM 32386 isolated from traditional “wild” Alpine cheese. Annals of Microbiology 69:1435–1443. https://doi.org/10.1007/s13213-019-01527-x Martínez-Serrano M, Gerónimo-Pardo M, Martínez-Monsalve A, Crespo-Sánchez MD (2017) Antibacterial effect of sevoflurane and isoflurane. Revista Espanola De Quimioterapia : Publicacion Oficial De La Sociedad Espanola De Quimioterapia 30:84–89 Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12:453–466. https://doi.org/10.1038/nrn3071 Mayer EA, Knight R, Mazmanian SK et al (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34:15490–15496. https://doi.org/10.1523/JNEUROSCI.3299-14.2014 Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 7:1–17. https://doi.org/10.3389/fmicb.2016.01934 Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J et al (2020) Postoperative ileus and postoperative gastrointestinal tract dysfunction: pathogenic mechanisms and novel treatment strategies beyond colorectal enhanced recovery after surgery protocols. Front Pharmacol 11:1–16. https://doi.org/10.3389/fphar.2020.583422 Mowat AMI (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341. https://doi.org/10.1038/nri1057 Neunlist M, Toumi F, Oreschkova T et al (2003) Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. American Journal of Physiology - Gastrointestinal and Liver Physiology 285:1028–1036. https://doi.org/10.1152/ajpgi.00066.2003 Nury H, van Renterghem C, Weng Y et al (2011) X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469:428–431. https://doi.org/10.1038/nature09647 Oakes V, Domene C (2019) Capturing the molecular mechanism of anesthetic action by simulation methods. Chem Rev 119:5998–6014. https://doi.org/10.1021/acs.chemrev.8b00366 Obata Y, Castaño Á, Boeing S et al (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578:284–289. https://doi.org/10.1038/s41586-020-1975-8 Odenwald MA, Turner JR (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 14:9–21. https://doi.org/10.1038/nrgastro.2016.169 Okumura R, Takeda K (2017) Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 49:e338–e348. https://doi.org/10.1038/emm.2017.20 Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033. https://doi.org/10.1111/cmi.12308 Proctor LM, Creasy HH, Fettweis JM et al (2019) The integrative human microbiome project. Nature 569:641–648. https://doi.org/10.1038/s41586-019-1238-8 Putignani L, Del Chierico F, Petrucca A et al (2014) The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res 76:2–10. https://doi.org/10.1038/pr.2014.49 Quigley E (2018) The gut-brain axis and the microbiome: clues to pathophysiology and opportunities for novel management strategies in irritable bowel syndrome (IBS). J Clin Med 7:6. https://doi.org/10.3390/jcm7010006 Quigley EMM (2017) Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol 14:315–320. https://doi.org/10.1038/nrgastro.2017.29 Rajagopala SV, Vashee S, Oldfield LM et al (2017) The human microbiome and cancer. Cancer Prevent Res 10:226–234. https://doi.org/10.1158/1940-6207.CAPR-16-0249 Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Autonomic Neuroscience: Basic and Clinical 153:41–46. https://doi.org/10.1016/j.autneu.2009.07.007 Rivera-Chávez F, Lopez CA, Bäumler AJ (2017) Oxygen as a driver of gut dysbiosis. Free Radical Biol Med 105:93–101. https://doi.org/10.1016/j.freeradbiomed.2016.09.022 Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:1–10. https://doi.org/10.1038/s41467-018-05470-4 Rossaint J, Zarbock A (2019) Anesthesia-induced immune modulation. Curr Opin Anaesthesiol 32:799–805. https://doi.org/10.1097/ACO.0000000000000790 Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:1–25. https://doi.org/10.1101/cshperspect.a012427 Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477. https://doi.org/10.1038/nrn3257 Schwarte LA, Schwartges I, Schober P et al (2010) Sevoflurane and propofol anaesthesia differentially modulate the effects of epinephrine and norepinephrine on microcirculatory gastric mucosal oxygenation. Br J Anaesth 105:421–428. https://doi.org/10.1093/bja/aeq215 Serbanescu MA, Mathena RP, Xu J et al (2019) General anesthesia alters the diversity and composition of the intestinal microbiota in mice. Anesth Analg 129:e126–e129. https://doi.org/10.1213/ANE.0000000000003938 Shen X, Dong Y, Xu Z et al (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118:502–515. https://doi.org/10.1097/ALN.0b013e3182834d77 Shi HN, Walker WA (2015) Development and physiology of the intestinal mucosal defense. In: Mucosal Immunology: Fourth Edition. Elsevier, pp 9–29 Sielenkämper AW, Eicker K, van Aken H (2000) Thoracic epidural anesthesia increases mucosal perfusion in ileum of rats. Anesthesiology 93:844–851. https://doi.org/10.1097/00000542-200009000-00036 Son Y (2010) Molecular mechanisms of general anesthesia. Korean J Anesthesiol 59:3–8. https://doi.org/10.4097/kjae.2010.59.1.3 Sorgdrager FJH, Naudé PJW, Kema IP et al (2019) Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front Immunol 10:1–8. https://doi.org/10.3389/fimmu.2019.02565 Spurny R, Billen B, Howard RJ et al (2013) Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysanthemi ligand-gated ion channel (ELIC). J Biol Chem 288:8355–8364. https://doi.org/10.1074/jbc.M112.424507 Stollings LM, Jia LJ, Tang P et al (2016) Immune modulation by volatile anesthetics. Anesthesiology 125:399–411. https://doi.org/10.1097/ALN.0000000000001195 Strandwitz P, Kim KH, Terekhova D et al (2019) GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 4:396–403. https://doi.org/10.1038/s41564-018-0307-3 Thompson AJ, Alqazzaz M, Ulens C, Lummis SCR (2012) The pharmacological profile of ELIC, a prokaryotic GABA-gated receptor. Neuropharmacology 63:761–767. https://doi.org/10.1016/j.neuropharm.2012.05.027 Uhing MR, Kimura RE (1995) The effect of surgical bowel manipulation and anesthesia on intestinal glucose absorption in rats. J Clin Investig 95:2790–2798. https://doi.org/10.1172/JCI117983 Wang C, Weihrauch D, Schwabe DA et al (2006) Extracellular signal-regulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1α and vascular endothelial growth factor expression in rats. Anesth Analg 103:281–288. https://doi.org/10.1213/01.ane.0000226094.94877.98 Wang F, Roy S (2017) Gut homeostasis, microbial dysbiosis, and opioids. Toxicol Pathol 45:150–156. https://doi.org/10.1177/0192623316679898 Wang L, Yang X, Wu H (2019) Juvenile rats show altered gut microbiota after exposure to isoflurane as neonates. Neurochem Res 44:776–786. https://doi.org/10.1007/s11064-018-02707-y Wen J, Ding Y, Wang L, Xiao Y (2020) Gut microbiome improves postoperative cognitive function by decreasing permeability of the blood-brain barrier in aged mice. Brain Res Bull 164:249–256. https://doi.org/10.1016/j.brainresbull.2020.08.017 Woll KA, Zhou X, Bhanu NV et al (2018) Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB Journal 32:4172–4189. https://doi.org/10.1096/fj.201701347R Xue J, Askwith C, Javed NH, Cooke HJ (2007) Autonomic nervous system and secretion across the intestinal mucosal surface. Autonomic Neuroscience: Basic and Clinical 133:55–63. https://doi.org/10.1016/j.autneu.2007.02.001 Yang S, Gu C, Mandeville ET, et al (2017) Anesthesia and surgery impair blood–brain barrier and cognitive function in mice. Frontiers in Immunology 8https://doi.org/10.3389/fimmu.2017.00902 Yang T, Velagapudi R, Terrando N (2020) Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol 21:1319–1326. https://doi.org/10.1038/s41590-020-00812-1 Yang XD, Wang LK, Wu HY, Jiao L (2018) Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol 18:1–11. https://doi.org/10.1186/s12871-018-0642-1 Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. https://doi.org/10.1016/j.cell.2015.02.047 Yue R, Wei X, Zhao J, et al (2021) Essential role of IFN-γ in regulating gut antimicrobial peptides and microbiota to protect against alcohol-induced bacterial translocation and hepatic inflammation in mice. Frontiers in Physiology 11https://doi.org/10.3389/fphys.2020.629141 Yuki K, Eckenhoff RG (2016) Mechanisms of the immunological effects of volatile anesthetics: a review. Anesth Analg 123:326–335. https://doi.org/10.1213/ANE.0000000000001403 Zhan G, Hua D, Huang N, et al (2019) Anesthesia and surgery induce cognitive dysfunction in elderly male mice: the role of gut microbiota. Aging 11:1778–1790. https://doi.org/10.18632/aging.101871 Zhang J, Bi JJ, Guo GJ et al (2019) Abnormal composition of gut microbiota contributes to delirium-like behaviors after abdominal surgery in mice. CNS Neurosci Ther 25:685–696. https://doi.org/10.1111/cns.13103 Zhang J, Tan H, Jiang W, Zuo Z (2015) The choice of general anesthetics may not affect neuroinflammation and impairment of learning and memory after surgery in elderly rats. J Neuroimmune Pharmacol 10:179–189. https://doi.org/10.1007/s11481-014-9580-y Zhang W, Xiong BR, Zhang LQ et al (2020) Disruption of the GABAergic system contributes to the development of perioperative neurocognitive disorders after anesthesia and surgery in aged mice. CNS Neurosci Ther 26:913–924. https://doi.org/10.1111/cns.13388 Zhao L, Ni Y, Su M, et al (2017) High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatizationhttps://doi.org/10.1021/acs.analchem.7b00660 Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science (new York, NY) 352:565–569. https://doi.org/10.1126/science.aad3369 Zitta K, Meybohm P, Bein B et al (2010) Cytoprotective effects of the volatile anesthetic sevoflurane are highly dependent on timing and duration of sevoflurane conditioning: findings from a human, in-vitro hypoxia model. Eur J Pharmacol 645:39–46. https://doi.org/10.1016/j.ejphar.2010.07.017