General above-stump volume and biomass functions for Pinus radiata, Eucalyptus globulus and Eucalyptus nitens

Biomass and Bioenergy - Tập 155 - Trang 106280 - 2021
Carlos A. Gonzalez-Benecke1, M.P. Fernández2,3,4, T.J. Albaugh5, R. Ahumada6, H.E. Bown7, J. Gayoso8, V. Gerding8, O.B. Mardones9, A.R. Rodríguez10, R. Rubilar3,10
1Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, Corvallis, OR, 97331, USA
2Departamento de Ecosistemas y Medioambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
3Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago, Chile
4Centro UC de Innovación en Madera, Pontificia Universidad Católica de Chile, Santiago, Chile
5Forest Productivity Cooperative, Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
6Investigaciones Forestales Bioforest S.A., Coronel, Chile
7Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
8Universidad Austral de Chile, Facultad de Ciencias Forestales y Recursos Naturales, Valdivia, Chile
9Desarrollo de Ingeniería Cuasar SpA, Los Ángeles, Chile
10Cooperativa de Productividad Forestal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile

Tài liệu tham khảo

Instituto Forestal de Chile, 2019 2017 FLORES, 2004, 25 Álvarez, 2013, Factors influencing the growth of radiata pine plantations in Chile, Forestry, 86, 10.1093/forestry/cps072 Salas, 2016, The forest sector in Chile: an overview and current challenges, J. For., 114 Droppelmann, 2019, Contribución de los bosques nativos y plantados a la mitigación de los impactos del cambio climático en Chile en un contexto de desarrollo sustentable, Cienc. e Investig. For., 7, 10.52904/0718-4646.2019.513 Zhu, 2016, Wood-derived materials for green electronics, biological devices, and energy applications, Chem. Rev., 116 Liu, 2017, Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China, PLoS One, 12 Rossi, 2017, Waste from eucalyptus wood steaming as a natural dye source for textile fibers, J. Clean. Prod., 143, 10.1016/j.jclepro.2016.12.109 Prabhjot, 2019, Green fashion: need of the hour for sustainable development (a review), Res. Rev. Int. J. Multidiscip. ., 4, 11 Roy, 2019, Environmental and economic prospects of biomaterials in the automotive industry, Clean Technol, Environ. Policy., 21 2020 Olmedo, 2020, Baseline of carbon stocks in pinus radiata and eucalyptus spp. Plantations of Chile, Forests, 11, 10.3390/f11101063 Heilmayr, 2020, Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity, Nat. Sustain., 3, 10.1038/s41893-020-0547-0 Montagu, 2005, Developing general allometric relationships for regional estimates of carbon sequestration - an example using Eucalyptus pilularis from seven contrasting sites, For. Ecol. Manage., 204, 10.1016/j.foreco.2004.09.003 Baldwin, 1987, Green and dry-weight equations for above-ground components of planted loblolly pine trees in the West Gulf region, South. J. Appl. For., 11, 10.1093/sjaf/11.4.212 Gonzalez-Benecke, 2014, Local and general above-stump biomass functions for loblolly pine and slash pine trees, For. Ecol. Manage., 334, 10.1016/j.foreco.2014.09.002 Gonzalez-Benecke, 2018, Effect of vegetation management and site conditions on volume, biomass and leaf area allometry of four coniferous species in the Pacific Northwest United States, Forests, 9, 10.3390/f9090581 Senelwa, 1997, Tree biomass equations for short rotation eucalypts grown in New Zealand, Biomass Bioenergy, 13, 10.1016/S0961-9534(97)00026-3 Picard, 2012, Using bayesian model averaging to predict tree aboveground biomass in tropical moist forests, For. Sci., 58 González-García, 2013, Above-ground biomass estimation at tree and stand level forshort rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain, Biomass Bioenergy, 54, 10.1016/j.biombioe.2013.03.019 Kuyah, 2013, Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes, Biomass Bioenergy, 55, 10.1016/j.biombioe.2013.02.011 Ríos-Saucedo, 2016, Allometric equations commonly used for estimating shoot biomass in short-rotation wood energy species: a review, Rev. Chapingo Ser. Ciencias For. y Del Ambient., 22 Garcia_Florez, 2019, Developing biomass estimation models for above-ground compartments in Eucalyptus dunnii and Corymbia citriodora plantations, Biomass Bioenergy, 130, 10.1016/j.biombioe.2019.105353 Madgwick, 1983, Estimation of the oven-dry weight of stems, needles, and branches of individual Pinus radiata trees, New Zeal. J. For. Sci., 13, 108 Baker, 1984, Biomass equation for pinus radiata in gippsland, Victoria, New Zeal. J. For. Sci., 14 Muñoz-Riveros, 2005, Análisis de biomasa del vuelo de un rodal adulto de Pinus radiata, Bosque, 26, 33, 10.4067/S0717-92002005000300004 Moore, 2010, Allometric equations to predict the total above-ground biomass of radiata pine trees, Ann. For. Sci., 67, 10.1051/forest/2010042 Prado, 1991, Funciones de biomasa de Eucalyptus globulus ssp. globulus en la región costera central, Cienc. e Investig. For., 5, 59, 10.52904/0718-4646.1991.147 Peters, 1985 Peters, 2005 Minte, 2004 Rance, 2012, vol. 43 Tomé, 2007, Equações de volume total, volume percentual e de perfil do tronco para Eucalyptus globulus Labill. em Portugal, Silva Lusit., 15 Zianis, 2005, Biomass and stem volume equations for tree species in Europe, Silva Fenn, Monogr, 4 Parresol, 1999, Assessing tree and stand biomass: a review with examples and critical comparisons, For. Sci., 45 Van Lear, 1986, Comparison of biomass equations for planted vs. natural loblolly pine stands of sawtimber size, For. Ecol. Manage., 14, 10.1016/0378-1127(86)90118-0 Fernández, 2005, Arquitectura de copa y calidad de madera en Pino radiata Fernández, 2007, Morphological trends in main stem of Pinus radiata D. Don: transition between vegetative and reproductive phase, Scand. J. For. Res., 22, 398, 10.1080/02827580701610261 Paulina Fernández, 2017, Effects of thinning and pruning on stem and crown characteristics of radiata pine (Pinus radiata D. Don), IForest, 10 Rubilar, 2010, Silvicultural manipulation and site effect on above and belowground biomass equations for young Pinus radiata, Biomass Bioenergy, 34, 10.1016/j.biombioe.2010.07.015 Schmitt, 1981, Generalized biomass estimation equations for Betula papyrifera Marsh, Can. J. For. Res., 11, 10.1139/x81-122 Pastor, 1984, Biomass prediction using generalized allometric regressions for some northeast tree species, For. Ecol. Manage., 7, 10.1016/0378-1127(84)90003-3 Jenkins, 2003, National-scale biomass estimators for United States tree species, For. Sci., 49 Lambert, 2005, Canadian national tree aboveground biomass equations, Can. J. For. Res., 35, 10.1139/x05-112 Zhang, 2006, Estimating forest biomass in the USA using generalized allometric models and MODIS land products, Geophys. Res. Lett., 33, 10.1029/2006GL025879 Case, 2008, Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada, Can. J. For. Res., 38 Zeng, 2011, A new general allometric biomass model, Nat. Preced., 10.1038/npre.2011.6704.1 Chojnacky, 2014, Forestry, 87, 10.1093/forestry/cpt053 Forrester, 2017, Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate, For. Ecol. Manage., 396, 10.1016/j.foreco.2017.04.011 Bracho, 2018, Carbon accumulation in loblolly pine plantations is increased by fertilization across a soil moisture availability gradient, For. Ecol. Manage., 424, 10.1016/j.foreco.2018.04.029 Mizuta, 2021, Holistic aboveground ecological productivity efficiency modeling using data envelopment analysis (in the southeastern U.S.), Sci. Total Environ. Gonzalez-Benecke, 2014, Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure, For. Ecol. Manage., 327, 10.1016/j.foreco.2014.04.030 Gonzalez-Benecke, 2016, Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands, For. Ecol. Manage., 361, 10.1016/j.foreco.2015.11.025 Gonzalez-Benecke, 2011, A flexible hybrid model of life cycle carbon balance for loblolly pine (Pinus taeda L.) management systems, Forests, 2, 10.3390/f2030749 Gonzalez-Benecke, 2010, Forest management effects on in situ and ex situ slash pine forest carbon balance, For. Ecol. Manage., 260, 10.1016/j.foreco.2010.05.038 Gonzalez-Benecke, 2015, Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks, For. Ecol. Manage., 355, 10.1016/j.foreco.2015.02.029 Albaugh, 2017, Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations, Biomass Bioenergy, 97, 10.1016/j.biombioe.2016.12.025 Gayoso, 2002 Gerding, 2011 Geldres, 2006, Biomasa de Eucalyptus nitens de 4-7 años de edad en un rodal de la X Región, Chile, Bosque, 27, 10.4067/S0717-92002006000300001 Rodríguez, 2003, Biomass partitioning and leaf area of Pinus radiata trees subjected to silvopastoral and conventional forestry in the VI region, Chile, Rev. Chil. Hist. Nat., 437 Fernández, 2016, How environmental variables are related to shoot and foliage development and wood ring formation: an integrated analysis for functional-structural modeling purposes Schlegel, 2000 Ruark, 1987, Comparison of constant and variable allometric ratios for estimating Populus tremuloides biomass, For. Sci., 33, 294 Burkhart, 2012 J Neter, 1996, Applied linear statistical models, J. Educ., 36 Reed, 1998, Total aboveground biomass and net dry matter accumulation by plant component in young Eucalyptus globulus in response to irrigation, For. Ecol. Manage., 103, 10.1016/S0378-1127(97)00174-6 Moras, 2013, Tablas de volumen para árboles individuales de Eucalyptus globulus ssp. globulus cultivados en la región sur de Uruguay, Agrociencia Uruguay, 17, 11, 10.31285/AGRO.17.458 Gilabert, 2010, An assessment of volume-ratio functions for Eucalyptus globulus and E. nitens in Chile, Cienc. Investig. Agrar., 37 Pinilla, 1996, Determinación de funciones de volumen para eucalipto, Cienc. e Investig. For., 10, 99, 10.52904/0718-4646.1996.235 Bi, 1994, Volume equations for six Eucalyptus species on the south-east tablelands of New South Wales, Res. Pap, 1 Kimberley, 2007, National volume function for estimating total stem volume of Pinus radiata stands in New Zealand, New Zeal. J. For. Sci., 37 van Niekerk, 2020, vol. 82 Muñoz, 2005 Valencia Delgado, 2014, Estimation of aerial biomass using discrete-wave LiDAR data in combination with different vegetation indices in plantations of Pinus radiata (D. DON), Región del Maule, Chile, Sustain. Agri, Food Environ. Res., 2, 10.7770/safer-V2N3-art823 Cartes-Rodríguez, 2016, Potential of pinus radiata plantations for use of harvest residues in characteristic soils of south-central Chile, Rev. Chapingo Ser. Ciencias For. y Del Ambient., XXII Acuña, 2017, Bioethanol potential from high density short rotation woody crops ON marginal lands IN CENTRAL Chile, Cerne, 23, 10.1590/01047760201723012278 Rubilar, 2018, Advances in silviculture of intensively managed plantations, Curr. For. Reports., 4 Cruz, 2008, Development of a model system to predict wildfire behaviour in pine plantations, Aust. For., 71, 10.1080/00049158.2008.10676278 Goodrick, 2012, Evaluating potential changes in fire risk from Eucalyptus plantings in the southern United States, Int. J. For. Res., 2012 Aburto, 2021, Hillslope soil erosion and mobility in pine plantations and native deciduous forest in the coastal range of south-Central Chile, Land Degrad. Dev., 32, 10.1002/ldr.3700 Turner, 1986, Nutrition and nutritional relationships of Pinus radiata, Annu. Rev. Ecol. Systemat., 17, 10.1146/annurev.es.17.110186.001545 Rodríguez Soalleiro, 2007, Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations, Ann. For. Sci., 64, 10.1051/forest:2007014 Landsberg, 1997, A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, For. Ecol. Manage., 95, 10.1016/S0378-1127(97)00026-1 Arnold, 1998, Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. Assoc., 34, 10.1111/j.1752-1688.1998.tb05961.x Sun, 2011, A general predictive model for estimating monthly ecosystem evapotranspiration, Ecohydrology, 4, 10.1002/eco.194 Corvalán, 2012 Ryan, 2006, The hydraulic limitation hypothesis revisited, Plant Cell Environ., 29, 10.1111/j.1365-3040.2005.01478.x Espinosa, 2005, Carbon sink potential of radiata pine plantations in Chile, Forestry, 78, 10.1093/forestry/cpi002 Peredo, 2000, Utilización Industrial de la Madera de Eucalyptus, 79 Gordon, 1983, Estimating bark thickness of Pinus radiata, New Zeal. J. For. Sci., 13 Tavares, 2011, Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules, Cerne, 17, 10.1590/S0104-77602011000100007 Waring, 2016, Tamm Review: insights gained from light use and leaf growth efficiency indices, For. Ecol. Manage., 379, 10.1016/j.foreco.2016.08.023 Saint-André, 2005, Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo, For. Ecol. Manage., 205, 10.1016/j.foreco.2004.10.006 António, 2007, Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass, Can. J. For. Res., 37, 10.1139/X06-276 Álvarez González, 2012, Estimación de la biomasa arbórea de “Eucalyptus globulus” y “Pinus pinaster” en Galicia, Recur. Rurais., 1, 21 Milla, 2013 Corvalán, 2011 Genet, 2011, Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe, For. Ecol. Manage., 261, 10.1016/j.foreco.2010.12.034 Peters, 2001, Simulador de árbol individual de pino radiata (Pinus radiata D. Don): arquitectura de Copa y Calidad de Madera Madgwick, 1983, Seasonal changes in the biomass of a young Pinus radiata stand, New Zeal. J. For. Sci., 13