General above-stump volume and biomass functions for Pinus radiata, Eucalyptus globulus and Eucalyptus nitens
Tài liệu tham khảo
Instituto Forestal de Chile, 2019
2017
FLORES, 2004, 25
Álvarez, 2013, Factors influencing the growth of radiata pine plantations in Chile, Forestry, 86, 10.1093/forestry/cps072
Salas, 2016, The forest sector in Chile: an overview and current challenges, J. For., 114
Droppelmann, 2019, Contribución de los bosques nativos y plantados a la mitigación de los impactos del cambio climático en Chile en un contexto de desarrollo sustentable, Cienc. e Investig. For., 7, 10.52904/0718-4646.2019.513
Zhu, 2016, Wood-derived materials for green electronics, biological devices, and energy applications, Chem. Rev., 116
Liu, 2017, Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China, PLoS One, 12
Rossi, 2017, Waste from eucalyptus wood steaming as a natural dye source for textile fibers, J. Clean. Prod., 143, 10.1016/j.jclepro.2016.12.109
Prabhjot, 2019, Green fashion: need of the hour for sustainable development (a review), Res. Rev. Int. J. Multidiscip. ., 4, 11
Roy, 2019, Environmental and economic prospects of biomaterials in the automotive industry, Clean Technol, Environ. Policy., 21
2020
Olmedo, 2020, Baseline of carbon stocks in pinus radiata and eucalyptus spp. Plantations of Chile, Forests, 11, 10.3390/f11101063
Heilmayr, 2020, Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity, Nat. Sustain., 3, 10.1038/s41893-020-0547-0
Montagu, 2005, Developing general allometric relationships for regional estimates of carbon sequestration - an example using Eucalyptus pilularis from seven contrasting sites, For. Ecol. Manage., 204, 10.1016/j.foreco.2004.09.003
Baldwin, 1987, Green and dry-weight equations for above-ground components of planted loblolly pine trees in the West Gulf region, South. J. Appl. For., 11, 10.1093/sjaf/11.4.212
Gonzalez-Benecke, 2014, Local and general above-stump biomass functions for loblolly pine and slash pine trees, For. Ecol. Manage., 334, 10.1016/j.foreco.2014.09.002
Gonzalez-Benecke, 2018, Effect of vegetation management and site conditions on volume, biomass and leaf area allometry of four coniferous species in the Pacific Northwest United States, Forests, 9, 10.3390/f9090581
Senelwa, 1997, Tree biomass equations for short rotation eucalypts grown in New Zealand, Biomass Bioenergy, 13, 10.1016/S0961-9534(97)00026-3
Picard, 2012, Using bayesian model averaging to predict tree aboveground biomass in tropical moist forests, For. Sci., 58
González-García, 2013, Above-ground biomass estimation at tree and stand level forshort rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain, Biomass Bioenergy, 54, 10.1016/j.biombioe.2013.03.019
Kuyah, 2013, Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes, Biomass Bioenergy, 55, 10.1016/j.biombioe.2013.02.011
Ríos-Saucedo, 2016, Allometric equations commonly used for estimating shoot biomass in short-rotation wood energy species: a review, Rev. Chapingo Ser. Ciencias For. y Del Ambient., 22
Garcia_Florez, 2019, Developing biomass estimation models for above-ground compartments in Eucalyptus dunnii and Corymbia citriodora plantations, Biomass Bioenergy, 130, 10.1016/j.biombioe.2019.105353
Madgwick, 1983, Estimation of the oven-dry weight of stems, needles, and branches of individual Pinus radiata trees, New Zeal. J. For. Sci., 13, 108
Baker, 1984, Biomass equation for pinus radiata in gippsland, Victoria, New Zeal. J. For. Sci., 14
Muñoz-Riveros, 2005, Análisis de biomasa del vuelo de un rodal adulto de Pinus radiata, Bosque, 26, 33, 10.4067/S0717-92002005000300004
Moore, 2010, Allometric equations to predict the total above-ground biomass of radiata pine trees, Ann. For. Sci., 67, 10.1051/forest/2010042
Prado, 1991, Funciones de biomasa de Eucalyptus globulus ssp. globulus en la región costera central, Cienc. e Investig. For., 5, 59, 10.52904/0718-4646.1991.147
Peters, 1985
Peters, 2005
Minte, 2004
Rance, 2012, vol. 43
Tomé, 2007, Equações de volume total, volume percentual e de perfil do tronco para Eucalyptus globulus Labill. em Portugal, Silva Lusit., 15
Zianis, 2005, Biomass and stem volume equations for tree species in Europe, Silva Fenn, Monogr, 4
Parresol, 1999, Assessing tree and stand biomass: a review with examples and critical comparisons, For. Sci., 45
Van Lear, 1986, Comparison of biomass equations for planted vs. natural loblolly pine stands of sawtimber size, For. Ecol. Manage., 14, 10.1016/0378-1127(86)90118-0
Fernández, 2005, Arquitectura de copa y calidad de madera en Pino radiata
Fernández, 2007, Morphological trends in main stem of Pinus radiata D. Don: transition between vegetative and reproductive phase, Scand. J. For. Res., 22, 398, 10.1080/02827580701610261
Paulina Fernández, 2017, Effects of thinning and pruning on stem and crown characteristics of radiata pine (Pinus radiata D. Don), IForest, 10
Rubilar, 2010, Silvicultural manipulation and site effect on above and belowground biomass equations for young Pinus radiata, Biomass Bioenergy, 34, 10.1016/j.biombioe.2010.07.015
Schmitt, 1981, Generalized biomass estimation equations for Betula papyrifera Marsh, Can. J. For. Res., 11, 10.1139/x81-122
Pastor, 1984, Biomass prediction using generalized allometric regressions for some northeast tree species, For. Ecol. Manage., 7, 10.1016/0378-1127(84)90003-3
Jenkins, 2003, National-scale biomass estimators for United States tree species, For. Sci., 49
Lambert, 2005, Canadian national tree aboveground biomass equations, Can. J. For. Res., 35, 10.1139/x05-112
Zhang, 2006, Estimating forest biomass in the USA using generalized allometric models and MODIS land products, Geophys. Res. Lett., 33, 10.1029/2006GL025879
Case, 2008, Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada, Can. J. For. Res., 38
Zeng, 2011, A new general allometric biomass model, Nat. Preced., 10.1038/npre.2011.6704.1
Chojnacky, 2014, Forestry, 87, 10.1093/forestry/cpt053
Forrester, 2017, Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate, For. Ecol. Manage., 396, 10.1016/j.foreco.2017.04.011
Bracho, 2018, Carbon accumulation in loblolly pine plantations is increased by fertilization across a soil moisture availability gradient, For. Ecol. Manage., 424, 10.1016/j.foreco.2018.04.029
Mizuta, 2021, Holistic aboveground ecological productivity efficiency modeling using data envelopment analysis (in the southeastern U.S.), Sci. Total Environ.
Gonzalez-Benecke, 2014, Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure, For. Ecol. Manage., 327, 10.1016/j.foreco.2014.04.030
Gonzalez-Benecke, 2016, Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands, For. Ecol. Manage., 361, 10.1016/j.foreco.2015.11.025
Gonzalez-Benecke, 2011, A flexible hybrid model of life cycle carbon balance for loblolly pine (Pinus taeda L.) management systems, Forests, 2, 10.3390/f2030749
Gonzalez-Benecke, 2010, Forest management effects on in situ and ex situ slash pine forest carbon balance, For. Ecol. Manage., 260, 10.1016/j.foreco.2010.05.038
Gonzalez-Benecke, 2015, Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks, For. Ecol. Manage., 355, 10.1016/j.foreco.2015.02.029
Albaugh, 2017, Biomass and nutrient mass of Acacia dealbata and Eucalyptus globulus bioenergy plantations, Biomass Bioenergy, 97, 10.1016/j.biombioe.2016.12.025
Gayoso, 2002
Gerding, 2011
Geldres, 2006, Biomasa de Eucalyptus nitens de 4-7 años de edad en un rodal de la X Región, Chile, Bosque, 27, 10.4067/S0717-92002006000300001
Rodríguez, 2003, Biomass partitioning and leaf area of Pinus radiata trees subjected to silvopastoral and conventional forestry in the VI region, Chile, Rev. Chil. Hist. Nat., 437
Fernández, 2016, How environmental variables are related to shoot and foliage development and wood ring formation: an integrated analysis for functional-structural modeling purposes
Schlegel, 2000
Ruark, 1987, Comparison of constant and variable allometric ratios for estimating Populus tremuloides biomass, For. Sci., 33, 294
Burkhart, 2012
J Neter, 1996, Applied linear statistical models, J. Educ., 36
Reed, 1998, Total aboveground biomass and net dry matter accumulation by plant component in young Eucalyptus globulus in response to irrigation, For. Ecol. Manage., 103, 10.1016/S0378-1127(97)00174-6
Moras, 2013, Tablas de volumen para árboles individuales de Eucalyptus globulus ssp. globulus cultivados en la región sur de Uruguay, Agrociencia Uruguay, 17, 11, 10.31285/AGRO.17.458
Gilabert, 2010, An assessment of volume-ratio functions for Eucalyptus globulus and E. nitens in Chile, Cienc. Investig. Agrar., 37
Pinilla, 1996, Determinación de funciones de volumen para eucalipto, Cienc. e Investig. For., 10, 99, 10.52904/0718-4646.1996.235
Bi, 1994, Volume equations for six Eucalyptus species on the south-east tablelands of New South Wales, Res. Pap, 1
Kimberley, 2007, National volume function for estimating total stem volume of Pinus radiata stands in New Zealand, New Zeal. J. For. Sci., 37
van Niekerk, 2020, vol. 82
Muñoz, 2005
Valencia Delgado, 2014, Estimation of aerial biomass using discrete-wave LiDAR data in combination with different vegetation indices in plantations of Pinus radiata (D. DON), Región del Maule, Chile, Sustain. Agri, Food Environ. Res., 2, 10.7770/safer-V2N3-art823
Cartes-Rodríguez, 2016, Potential of pinus radiata plantations for use of harvest residues in characteristic soils of south-central Chile, Rev. Chapingo Ser. Ciencias For. y Del Ambient., XXII
Acuña, 2017, Bioethanol potential from high density short rotation woody crops ON marginal lands IN CENTRAL Chile, Cerne, 23, 10.1590/01047760201723012278
Rubilar, 2018, Advances in silviculture of intensively managed plantations, Curr. For. Reports., 4
Cruz, 2008, Development of a model system to predict wildfire behaviour in pine plantations, Aust. For., 71, 10.1080/00049158.2008.10676278
Goodrick, 2012, Evaluating potential changes in fire risk from Eucalyptus plantings in the southern United States, Int. J. For. Res., 2012
Aburto, 2021, Hillslope soil erosion and mobility in pine plantations and native deciduous forest in the coastal range of south-Central Chile, Land Degrad. Dev., 32, 10.1002/ldr.3700
Turner, 1986, Nutrition and nutritional relationships of Pinus radiata, Annu. Rev. Ecol. Systemat., 17, 10.1146/annurev.es.17.110186.001545
Rodríguez Soalleiro, 2007, Evaluation through a simulation model of nutrient exports in fast-growing southern European pine stands in relation to thinning intensity and harvesting operations, Ann. For. Sci., 64, 10.1051/forest:2007014
Landsberg, 1997, A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, For. Ecol. Manage., 95, 10.1016/S0378-1127(97)00026-1
Arnold, 1998, Large area hydrologic modeling and assessment part I: model development, J. Am. Water Resour. Assoc., 34, 10.1111/j.1752-1688.1998.tb05961.x
Sun, 2011, A general predictive model for estimating monthly ecosystem evapotranspiration, Ecohydrology, 4, 10.1002/eco.194
Corvalán, 2012
Ryan, 2006, The hydraulic limitation hypothesis revisited, Plant Cell Environ., 29, 10.1111/j.1365-3040.2005.01478.x
Espinosa, 2005, Carbon sink potential of radiata pine plantations in Chile, Forestry, 78, 10.1093/forestry/cpi002
Peredo, 2000, Utilización Industrial de la Madera de Eucalyptus, 79
Gordon, 1983, Estimating bark thickness of Pinus radiata, New Zeal. J. For. Sci., 13
Tavares, 2011, Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules, Cerne, 17, 10.1590/S0104-77602011000100007
Waring, 2016, Tamm Review: insights gained from light use and leaf growth efficiency indices, For. Ecol. Manage., 379, 10.1016/j.foreco.2016.08.023
Saint-André, 2005, Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo, For. Ecol. Manage., 205, 10.1016/j.foreco.2004.10.006
António, 2007, Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass, Can. J. For. Res., 37, 10.1139/X06-276
Álvarez González, 2012, Estimación de la biomasa arbórea de “Eucalyptus globulus” y “Pinus pinaster” en Galicia, Recur. Rurais., 1, 21
Milla, 2013
Corvalán, 2011
Genet, 2011, Ontogeny partly explains the apparent heterogeneity of published biomass equations for Fagus sylvatica in central Europe, For. Ecol. Manage., 261, 10.1016/j.foreco.2010.12.034
Peters, 2001, Simulador de árbol individual de pino radiata (Pinus radiata D. Don): arquitectura de Copa y Calidad de Madera
Madgwick, 1983, Seasonal changes in the biomass of a young Pinus radiata stand, New Zeal. J. For. Sci., 13