Các định lý tổng quát về sự tồn tại và tính duy nhất của nghiệm cho phương trình vi phân gián đoạn

V. E. Slyusarchuk1
1Rivne Technical University, Rivne

Tóm tắt

Chúng tôi nghiên cứu bài toán Cauchy cho các phương trình vi phân gián đoạn trong trường hợp tổng quát.

Từ khóa


Tài liệu tham khảo

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).

A. Halanay and D. Wexler, Qualitative Theory of Pulse Systems [Russian translation], Mir, Moscow (1971).

P. C. Das and R. R. Sharma, “Existence and stability of measure differential equations,” Czech. Math. J., 22, No.97, 145–158 (1972).

S. Schwabik, Generalized Differential Equations. Fundamental Results, Rozpr. ČSAV MPV, Prague (1985).

S. Schwabik, Generalized Differential Equations. Special Results, Rozpr. ČSAV MPV, Prague (1989).

S. I. Trofimchuk, Investigation of Almost Periodic Pulse Systems [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Kiev (1993).

R. M. Tatsii, Discrete-Continuous Boundary-Value Problems for Differential Equations with Measures [in Russian], Doctoral-Degree Thesis, Lvov (1994).

G. E. Shilov, Mathematical Analysis. A Special Course [in Russian], Fizmatgiz, Moscow (1960).

A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1968).

V. E. Slyusarchuk, “On one property of absolutely convergent number series,” in: A. Ya. Dorogovtsev (editor), Mathematics Today'97 [in Russian], TViMS, Kiev (1997), pp. 28–42.

V. E. Slyusarchuk, “Weakly nonlinear perturbations of pulse systems,” Mat. Fiz. Nelin. Mekh., 215(49), 32–35 (1991).

V. E. Slyusarchuk, “P-continuous operators and their application to the solution of problems of mathematical physics,” Integr. Peretv. Zastos. Kraiov. Zadach, No. 15, 188–226 (1997).

T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

M. A. Krasnosel'skii, Positive Solutions of Operator Equations [in Russian], Fizmatgiz, Moscow (1962).

S. A. Chaplygin, “A new method for approximate integration of differential equations,” Tr. Tsentr. Aérodinam. Inst., No. 130, 5–17 (1932).

A. M. Samoilenko and S. D. Borisenko, “Sum-integral inequalities and stability of processes with discrete perturbations,” in: Differential Equations and Their Applications. Proceedings of the Third International Conference, Vol. 1, Russe (Bulgaria) (1987), pp. 377–380.