General Description of Fission Observables: GEF Model Code
Tài liệu tham khảo
Schmidt, 2014
Schmidt, 2014
Wahl, 1988, Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U, and 239Pu and for spontaneous fission of 252Cf, Atom. Data Nucl. Data Tables, 39, 1, 10.1016/0092-640X(88)90016-2
Asano, 2004, Dynamical calculation of multi-modal nuclear fission of fermium nuclei, J. Nucl. Radioch. Sc., 5, 1, 10.14494/jnrs2000.5.1
Asano, 2006, The dependency on the dissipation tensor of multi-model nuclear fission, J. Nucl. Radioch. Sc., 7, 7, 10.14494/jnrs2000.7.7
Aritomo, 2014, Fission dynamics at low excitation energy, Phys. Rev. C, 90, 10.1103/PhysRevC.90.054609
Randrup, 2011, Fission-fragment mass distributions from strongly damped shape evolution, Phys. Rev. C, 84, 10.1103/PhysRevC.84.034613
Goutte, 2005, Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in 238U, Phys. Rev. C, 71, 10.1103/PhysRevC.71.024316
Umar, 2010, Microscopic description of nuclear fission dynamics, J. Phys. G: Nucl. Part. Phys., 37, 10.1088/0954-3899/37/6/064037
Sargsyan, 2010, Quantum statistical effects in nuclear reactions, fission, and open quantum systems, Phys. Part. Nuclei, 41, 175, 10.1134/S1063779610020012
Goriely, 2013, Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals, Phys. Rev. C, 88, 10.1103/PhysRevC.88.061302
Sobiczewski, 2014, Accuracy of theoretical descriptions of nuclear masses, Phys. Rev. C, 89, 10.1103/PhysRevC.89.024311
Reinhard, 2006, From finite nuclei to the nuclear liquid drop: Leptodermous expansion based on self-consistent mean-field theory, Phys. Rev. C, 73, 10.1103/PhysRevC.73.014309
Goriely, 2015, The fundamental role of fission during r-process nucleosynthesis in neutron star mergers, Eur. Phys. J. A, 51, 22, 10.1140/epja/i2015-15022-3
Myers, 1996, Nuclear properties according to the Thomas-Fermi model, Nucl. Phys. A, 601, 141, 10.1016/0375-9474(95)00509-9
Karpov, 2008, On the topographical properties of fission barriers, J. Phys. G: Nucl. Part. Phys., 35, 10.1088/0954-3899/35/3/035104
Wigner, 1938, The transition state method, Trans. Faraday Sot., 34, 29, 10.1039/tf9383400029
Diebel, 1981, Microscopic calculations of fission barriers and critical angular momenta for excited heavy nuclear systems, Nucl. Phys. A, 355, 66, 10.1016/0375-9474(81)90132-9
Pei, 2009, Fission barriers of compound superheavy nuclei, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.192501
For a continuous tracking of these degrees of freedom, suitable prescriptions must be defined that generalise these values that are defined for the separated fragments to the respective deformation parameters of the system on the fission path before scission, This is usually provided by the shape parameterisation.
Pashkevich, 2008, The 226Th fission valleys, Nucl. Phys. A, 810, 77, 10.1016/j.nuclphysa.2008.06.013
Mosel, 1971, Potential energy surfaces for heavy nuclei in the two-center model, Nucl. Phys. A, 165, 73, 10.1016/0375-9474(71)90150-3
Schmidt, 2008, Experimental evidence for the separability of compound-nucleus and fragment properties in fission, Europh. Lett., 83, 32001, 10.1209/0295-5075/83/32001
Möller, 2009, Heavy-element fission barriers, Phys. Rev. C, 79, 10.1103/PhysRevC.79.064304
Adeev, 1989, Theory of macroscopic fission dynamics, Nucl. Phys. A, 502, 405c, 10.1016/0375-9474(89)90679-9
Rusanov, 1997, Features of mass distributions of hot rotating nuclei, Phys. At. Nucl., 60, 683
Karpov, 2001, Three-dimensional Langevin calculations of fission fragment mass-energy distribution from excited compound nuclei, Phys. Rev. C, 63, 10.1103/PhysRevC.63.054610
Myers, 1981, Adiabaticity criterion for charge equilibration with application to fission, Phys. Lett. B, 98, 1, 10.1016/0370-2693(81)90353-1
Karpov, 2002, Langevin description of charge fluctuations in fission of highly excited nuclei, Eur. Phys. J. A, 14, 169, 10.1140/epja/i2002-10004-2
Al-Adili, 2012, Impact of prompt-neutron corrections on final fission-fragment distributions, Phys. Rev. C, 86, 10.1103/PhysRevC.86.054601
Gross, 2004, A New Thermodynamics from Nuclei to Stars, Entropy, 6, 158, 10.3390/e6010158
Schmidt, 2010, Entropy-driven excitation-energy sorting in superfluid fission dynamics, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.212501
Boutoux, 2013, The SOFIA experiment, Phys. Procedia, 47, 166, 10.1016/j.phpro.2013.06.024
Kelic, 2006, Assessment of saddle-point-mass predictions for astrophysical applications, Phys. Lett. B, 634, 362, 10.1016/j.physletb.2006.02.010
Royer, 2007, Multiple-humped fission and fusion barriers of actinide and superheavy elements, J. Radioanal. Nucl. Ch., 272, 237, 10.1007/s10967-007-0507-4
Dobrowolski, 2007, Fission barriers in a macroscopic-microscopic model, Phys. Rev. C, 75, 10.1103/PhysRevC.75.024613
Kowal, 2010, Fission barriers for even-even superheavy nuclei, Phys. Rev. C, 82, 10.1103/PhysRevC.82.014303
Mirea, 2011, Th and U fission barriers within the Woods-Saxon two center shell model, Centr. Eur. J. Phys., 9, 116
Jachimowicz, 2012, Secondary fission barriers in even-even actinide nuclei, Phys. Rev. C, 85, 10.1103/PhysRevC.85.034305
Kowal, 2012, Examination of the existence of third, hyperdeformed minima in actinide nuclei, Phys. Rev. C, 85, 10.1103/PhysRevC.85.061302
Abusara, 2012, Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei, Phys. Rev. C, 85, 10.1103/PhysRevC.85.024314
Lu, 2012, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C, 85, 10.1103/PhysRevC.85.011301
Delaroche, 2006, Structure properties of even-even actinides at normal and super deformed shapes analysed using the Gogny force, Nucl. Phys. A, 771, 103, 10.1016/j.nuclphysa.2006.03.004
Goriely, 2007, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers, Phys. Rev. C, 75, 10.1103/PhysRevC.75.064312
Minato, 2008, Fission barriers in the neutron-proton isospin plane for heavy neutron-rich nuclei, Phys. Rev. C, 77, 10.1103/PhysRevC.77.044308
Goriely, 2009, Towards a prediction of fission cross sections on the basis of microscopic nuclear inputs, Phys. Rev. C, 79, 10.1103/PhysRevC.79.024612
Ivanyuk, 2009, Optimal shapes and fission barriers of nuclei within the liquid drop model, Phys. Rev. C, 79, 10.1103/PhysRevC.79.054327
Nilsson, 1955, Binding States of Individual Nucleons in Strongly Deformed Nuclei, Kgl. Danske Videnskab Selskab, Mat.-Fys. Medd., 29, 16
Myers, 1999, Thomas-Fermi fission barriers, Phys. Rev. C, 60, 10.1103/PhysRevC.60.014606
Möller, 1995, Nuclear ground-state masses and deformations, Atom. Nucl. Data Tables, 59, 185, 10.1006/adnd.1995.1002
Baldo, 2004, On the surface nature of the nuclear pairing, Phys. Rep., 391, 261, 10.1016/j.physrep.2003.10.007
Bjoernholm, 1980, The double-humped fission barrier, Rev. Mod. Phys., 52, 725, 10.1103/RevModPhys.52.725
Capote, 2009, RIPL - Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluations, Nucl. Data Sheets, 110, 3107, 10.1016/j.nds.2009.10.004
Dahlinger, 1982, Empirical saddle-point and ground-state masses as a probe of the droplet model, Nucl. Phys. A, 376, 94, 10.1016/0375-9474(82)90535-8
Barbero, 2012, Deformation and shell effects in nuclear mass formulas, Nucl. Phys. A, 874, 81, 10.1016/j.nuclphysa.2011.11.005
Zuker, 1994, On the microscopic derivation of a mass formula, Nucl. Phys. A, 576, 65, 10.1016/0375-9474(94)90738-2
Schmidt, 2012, Inconsistencies in the description of pairing effects in nuclear level densities, Phys. Rev. C, 86, 10.1103/PhysRevC.86.044322
von Egidy, 2009, Experimental energy-dependent nuclear spin distributions, Phys. Rev. C, 80, 10.1103/PhysRevC.80.054310
Ignatyuk, 1975, Phenomenological description of the energy dependence of the level density parameter, Sov. J. Nucl. Phys., 21, 255
Ignatyuk, 2001, Systematics of Low-Lying Level Densities and Radiative Widths, Hadrons Nuclei Appl., 3, 287, 10.1142/9789812810922_0053
Bjoernholm, 1974, Role of symmetry of the nuclear shape in rotational contributions to nuclear level densities, vol. 1, 367
Gilbert, 1965, A composite nuclear-level density formula with shell corrections, Can. J. Phys., 43, 1446, 10.1139/p65-139
Schmidt, 2000, Relativistic radioactive beams: A new access to nuclear-fission studies, Nucl. Phys. A, 665, 221, 10.1016/S0375-9474(99)00384-X
Itkis, 1990, Mass asymmetry of symmetric fission of nuclei with A approximately 200, Sov. J. Nucl. Phys., 52, 601
Andreyev, 2010, New Type of Asymmetric Fission in Proton-Rich Nuclei, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.252502
Mulgin, 1998, Shell effects in the symmetric-modal fission of pre-actinide nuclei, Nucl. Phys. A, 640, 375, 10.1016/S0375-9474(98)00332-7
Unik, 1974, Fragment mass and kinetic energy distributions for fissioning systems ranging from mass 230 to 256, vol. 2, 19
Wilkins, 1976, Scission-point model of nuclear fission based on deformed-shell effects, Phys. Rev. C, 14, 1832, 10.1103/PhysRevC.14.1832
Ragnarsson, 1984, Systematics of nuclear deformations, Phys. Scr., 29, 385, 10.1088/0031-8949/29/5/001
Brosa, 1990, Nuclear scission, Phys. Rep., 197, 167, 10.1016/0370-1573(90)90114-H
Mulgin, 1999, Observation of new channel in the proton-induced low-energy fission of nuclei from 233Pa to 245Bk, Phys. Lett. B, 462, 29, 10.1016/S0370-2693(99)00859-X
Itkis, 1985, Asymmetric fission of the pre-actinide nuclei, Z. Phys. A, 320, 433, 10.1007/BF01415720
Naqvi, 1986, Fission fragment properties in fast-neutron-induced fission of 237Np, Phys. Rev. C, 34, 218, 10.1103/PhysRevC.34.218
Lang, 1980, Nuclear charge and mass yields for 235U(nth, f) as a function of the kinetic energy of the fission products, Nucl. Phys. A, 345, 34, 10.1016/0375-9474(80)90411-X
Fong, 1969
G.A. Pik-Pichak, V.M. Strutinsky, Physics of the fission of the atomic nuclei, in: N.A. Perfilov, V.P. Eismont (Eds.), Moscow, Gosatmomizdat, 1962, p. 12.
Ignatyuk, 1969, Statistical description of the yields of fission products, Yad. Fiz., 9, 357
Oganessian, 1985, Heavy ions and nuclear fission, vol. 4, 1
Nix, 1965, Studies in the liquid-drop theory of nuclear fission, Nucl. Phys., 71, 1, 10.1016/0029-5582(65)90038-6
Itkis, 1995, Fission of excited nuclei with Z2/A = 20 - 33: mass-energy distributions of fragments, angular momentum, and liquid-drop model, Phys. At. Nucl., 58, 2026
Rusanov, 1999, Asymmetric fission barriers for hot rotating nuclei and experimental mass distributions of fission fragments, Phys. At. Nucl., 62, 547
Hambsch, 2000, Study of the 237Np(n,f)-reaction at MeV neutron energies, Nucl. Phys. A, 679, 3, 10.1016/S0375-9474(00)00338-9
Nifenecker, 1980, A dynamical treatment of isobaric widths in fission: An example of frozen quantal fluctuations, J. Physique Lett., 41, 47, 10.1051/jphyslet:0198000410304700
Asghar, 1980, Charge distribution in fission - a quantum mechanical phenomenon, Z. Phys. A, 296, 79, 10.1007/BF01415618
Mirea, 2008, Time-dependent pairing equations for seniority-one nuclear systems, Phys. Rev. C, 78, 10.1103/PhysRevC.78.044618
Mirea, 2009, New dynamical pair breaking effect, Phys. Lett. B, 680, 316, 10.1016/j.physletb.2009.09.035
Asghar, 1984, Saddle-to-scission landscape in fission: experiments and theories, J. Phys. Colloques, 45, C6-455, 10.1051/jphyscol:1984654
Krappe, 2007, Cluster model versus Fermi-fluid approach to fission theory, Int. J. Mod. Phys. E, 16, 396, 10.1142/S021830130700582X
Myers, 1997, The congruence energy: a contribution to nuclear masses, deformation energies and fission barriers, Nucl. Phys. A, 612, 249, 10.1016/S0375-9474(97)80014-0
The degeneracy of magnetic sub-states is not considered, because it contributes very little to the variation of the density of states as a function of excitation energy.
Guttormsen, 2003, Free energy and criticality in the nucleon pair breaking process, Phys. Rev. C, 68, 10.1103/PhysRevC.68.034311
Schiller, 2001, Critical temperature for quenching of pair correlations, Phys. Rev. C, 63, 10.1103/PhysRevC.63.021306
Agvaanluvsan, 2004, Level densities and gamma-ray strength functions in 170,171,172Yb, Phys. Rev. C, 70, 10.1103/PhysRevC.70.054611
Bürger, 2012, Nuclear level density and gamma-ray strength function of 43Sc, Phys. Rev. C, 85, 10.1103/PhysRevC.85.064328
Larsen, 2007, Nuclear level densities and gamma-ray strength functions in 44,45Sc, Phys. Rev. C, 76, 10.1103/PhysRevC.76.044303
Syed, 2009, Extraction of thermal and electromagnetic properties in 45Ti, Phys. Rev. C, 80, 10.1103/PhysRevC.80.044309
Guttormsen, 2011, Fermi's golden rule applied to the gamma decay in the quasicontinuum of 46Ti, Phys. Rev. C, 83, 10.1103/PhysRevC.83.014312
Larsen, 2006, Microcanonical entropies and radiative strength functions of 50,51V, Phys. Rev. C, 73, 10.1103/PhysRevC.73.064301
Schmidt, 2011, Final excitation energy of fission fragments, Phys. Rev. C, 83, 10.1103/PhysRevC.83.061601
Müller, 1984, Fragment velocities, energies and masses from fast neutron induced fission of 235U, Phys. Rev. C, 29, 885, 10.1103/PhysRevC.29.885
Nix, 1967, The normal modes of oscillation of a uniformly charged drop about its saddle-point shape, Ann. Phys., 41, 52, 10.1016/0003-4916(67)90199-6
Dubray, 2008, Structure properties of 226Th and 256,258,260Fm fission fragments: Mean-field analysis with the Gogny force, Phys. Rev. C, 77, 10.1103/PhysRevC.77.014310
Nix, 1984, Stationary Fokker-Planck equation applied to fission dynamics, Nucl. Phys. A, 424, 239, 10.1016/0375-9474(84)90184-2
Zhdanov, 1993, Fragments Energy Distributions and Fission Dynamics of the Heated Nuclei II, Phys. At. Nucl., 56, 175
Caamano, 2011, Evidence for the predominant influence of the asymmetry degree of freedom on the even-odd structure in fission-fragment yields, J. Phys. G: Nucl. Part. Phys., 38, 10.1088/0954-3899/38/3/035101
Jurado, 2015, Influence of complete energy sorting on the characteristics of the odd-even effect in fission-fragment element distributions, J. Phys. G: Nucl. Part. Phys., 42, 10.1088/0954-3899/42/5/055101
Ricciardi, 2004, Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions, Nucl. Phys. A, 733, 299, 10.1016/j.nuclphysa.2004.01.069
Ricciardi
Mei, 2014, Origin of odd-even staggering in fragment yields: Impact of nuclear pairing and shell structure on the particle-emission threshold energy, Phys. Rev. C, 89, 10.1103/PhysRevC.89.054612
Moretto, 1972, Statistical description of a paired nucleus with the inclusion of angular momentum, Nucl. Phys. A, 185, 145, 10.1016/0375-9474(72)90556-8
Rochman, 2002, Isotopic yields from the reaction 245Cm(nth,f) at the Lohengrin mass separator, Nucl. Phys. A, 710, 3, 10.1016/S0375-9474(02)01026-6
Gontchar, 1993, Consistent dynamical and statistical description of fission of hot nuclei, Phys. Rev. C, 47, 2228, 10.1103/PhysRevC.47.2228
Swiatecki, 1955, Systematics of spontaneous fission half-lives, Phys. Rev., 100, 937, 10.1103/PhysRev.100.937
Patyk, 1989, Shell effects in the properties of the heaviest nuclei, Nucl. Phys. A, 491, 267, 10.1016/0375-9474(89)90702-1
Vladuca, 2003, Evaluation of the fission cross-section within the multi-modal fission approach for 235U(n, f), Nucl. Phys. A, 720, 274, 10.1016/S0375-9474(03)00911-4
Huizenga, 1960, Interpretation of isomeric cross-section ratios for (n,gamma) and (gamma,n) reactions, Phys. Rev., 120, 1305, 10.1103/PhysRev.120.1305
Vandenbosch, 1960, Method for deducing the angular-momentum distibution from isomeric ratios, Phys. Rev., 120, 1313, 10.1103/PhysRev.120.1313
Naik, 2007, Single-particle spin effect on fission fragment angular momentum, Eur. Phys. J. A, 31, 195, 10.1140/epja/i2006-10171-0
Strutinski, 1960, Spectra of gamma-rays from neutron capture by heavy nuclei (II), Nucl. Phys., 16, 657, 10.1016/S0029-5582(60)81022-X
Zielinska-Pfabe, 1974, Angular momentum distribution of fission fragments as a result of bending modes at the scission point, Phys. Lett. B, 49, 123, 10.1016/0370-2693(74)90488-2
Rasmussen, 1969, A model for calculating the angular momentum distribution of fission fragments, Nucl. Phys. A, 136, 465, 10.1016/0375-9474(69)90066-9
Moretto, 1989, Angular-momentum-bearing modes in fission, Nucl. Phys. A, 502, 453c, 10.1016/0375-9474(89)90682-9
Gönnenwein, 2007, Angular momentum of near-spherical fission fragments, Intern. J. Mod. Phys. E, 16, 410, 10.1142/S0218301307005843
Bonneau, 2007, Scission configurations and their implication in fission-fragment angular momenta, Phys. Rev. C, 75, 10.1103/PhysRevC.75.064313
Hoffman, 1964, Torques by electrostatic repulsion, Phys. Rev., 133, B174
Kadmensky, 2008, Quantum properties of deformation modes of fissile-nucleus motion, Phys. Atom. Nuclei, 71, 1193, 10.1134/S1063778808070107
Hasse, 1988
Imanishi, 1976, Independent isomer yields of Sb and Te isotopes in thermal-neutron fission of 233U, 235U and 239Pu, Nucl. Phys. A, 263, 141, 10.1016/0375-9474(76)90189-5
We would also expect an even-odd staggering of the fragment angular momentum in neutron number. However, this effect is not easily observable, because it is washed out by the fluctuations in the prompt-neutron emission.
Tomar, 2007, Odd-even effect in fragment angular momentum in low-energy fission of actinides, Pramana, 68, 111, 10.1007/s12043-007-0013-9
Rubehn, 1996, Scaling laws in 3He induced nuclear fission, Phys. Rev. C, 54, 3062, 10.1103/PhysRevC.54.3062
Dostrovsky, 1959, Monte Carlo calculations of nuclear evaporation processes, III. Applications to low-energy reactions, Phys. Rev., 116, 683, 10.1103/PhysRev.116.683
Junghans, 2008, Photon data shed new light upon the GDR spreading width in heavy nuclei, Phys. Lett. B, 670, 200, 10.1016/j.physletb.2008.10.055
Stetcu, 2013, Isomer production ratios and the angular momentum distribution of fission fragments, Phys. Rev. C, 88, 10.1103/PhysRevC.88.044603
Litaize, 2014, Investigation of n+238U fission observables, Nucl. Datat Sheets, 118, 216, 10.1016/j.nds.2014.04.040
Mariscotti, 1969, Phenomenological analysis of ground-state bands in even-even nuclei, Phys. Rev., 178, 1864, 10.1103/PhysRev.178.1864
Batra, 1991, Reformulation of the variable moment of inertia model in terms of nuclear softness, Phys. Rev. C, 43, 1725, 10.1103/PhysRevC.43.1725
Madland, 1977, The influence of isomeric states on independent fission product yields, Nucl. Sci. Eng., 64, 859, 10.13182/NSE77-A14501
Rudstam, 1992, Isomeric yields in fission, 25
Griffin, 1966, Statistical Model of Intermediate Structure, Phys. Rev. Lett., 17, 478, 10.1103/PhysRevLett.17.478
Blann, 1975, Preequilibrium decay, Ann. Rev. Nucl. Sci., 25, 123, 10.1146/annurev.ns.25.120175.001011
Blann, 2000, Precompound Monte-Carlo model for cluster induced reactions, Phys. Rev. C, 62, 10.1103/PhysRevC.62.034604
Kalbach, 2006, Missing final states and the spectral end-point in exciton model calculations, Phys. Rev. C, 73, 10.1103/PhysRevC.73.024614
Ignatyuk, 1988, Consistent analysis of cross sections on (n,f) and (n,xn) reactions for the actinides, Sov. J. Nucl. Phys., 47, 224
Back, 2014, Recent developments in heavy-ion fusion reactions, Rev. Mod. Phys., 86, 317, 10.1103/RevModPhys.86.317
Nadtochy, 2012, Four-dimensional Langevin dynamics of heavy-ion-induced fission, Phys. Rev. C, 85, 10.1103/PhysRevC.85.064619
Myers, 1966, Nuclear masses and deformations, Nucl. Phys., 81, 1, 10.1016/S0029-5582(66)80001-9
Vogt, 2014, Neutron angular correlations in spontaneous and neutron-induced fission, Phys. Rev. C, 90, 10.1103/PhysRevC.90.064623
Kupriyanov, 1980, Simple description of the dependence of the fission barriers and the ratio gamma(n)/gamma(f) on the nucleonic composition for transuranium nuclei, Sov. J. Nucl. Phys., 32, 184
Back, 1974, Fission of doubly even actinide nuclei induced by direct reactions, Phys. Rev. C, 9, 1924, 10.1103/PhysRevC.9.1924
Back, 1974, Fission of odd-A and doubly odd actinide nuclei induced by direct reactions, Phys. Rev. C, 10, 1948, 10.1103/PhysRevC.10.1948
Gavron, 1975, Measurement and interpretation of Gamma(n)/Gamma(f) for actinide nuclei, Phys. Rev. Lett., 34, 827, 10.1103/PhysRevLett.34.827
Gavron, 1976, Gamma(n)/Gamma(f) for actinide nuclei using (3He,df) and (3He,tf) reactions, Phys. Rev. C, 13, 2374, 10.1103/PhysRevC.13.2374
Gavron, 1977, Complexity of the potential-energy surface for fission of 238U, Phys. Rev. Lett., 38, 1457, 10.1103/PhysRevLett.38.1457
Cheifetz, 1981, Fission probabilities for actinide nuclei excited by the (12C, 8[loc=pre]Beg.s.) reaction, Phys. Rev. C, 24, 519, 10.1103/PhysRevC.24.519
Rodriguez-Tajes, 2014, Transfer reactions in inverse kinematics: An experimental approach for fission investigations, Phys. Rev. C, 89, 10.1103/PhysRevC.89.024614
Schmidt, 2011, Prompt-neutron and prompt-gamma emission from a general description of the fission process, vol. 1423
Schmidt, 2012, Global view on fission observables - new insights and new puzzles, Phys. Proc., 31, 147, 10.1016/j.phpro.2012.04.020
Crough, 1977, Fission-product yields from neutron-induced fission, At. Data Nucl. Data Tables, 19, 417, 10.1016/0092-640X(77)90023-7
Stein, 1957, Velocities of fragment pairs from 233U, 235U, and 239Pu fission, Phys. Rev., 108, 94, 10.1103/PhysRev.108.94
Milton, 1958, Spontaneous fission fragment velocity measurements and coincident gamma spectra for 252Cf, Phys. Rev., 111, 877, 10.1103/PhysRev.111.877
Schmitt, 1965, Precision measurements of correlated energies and velocities of 252Cf fission fragments, Phys. Rev., 137, B837, 10.1103/PhysRev.137.B837
Moll, 1975, Analysis of 236U-fission products by the recoil separator ‘Lohengrin’, Nucl. Instrum. Methods, 123, 615, 10.1016/0029-554X(75)90219-0
Donzaud, 1998, Low-energy fission investigated in reactions of 750 A MeV 238U-ions on 208Pb. II: Isotopic distributions, Eur. Phys. J. A, 1, 407, 10.1007/s100500050076
Ebran, 2013, Picosecond resolution on relativistic heavy ions' time-of-flight measurement, Nucl. Instrum. Methods A, 728, 40, 10.1016/j.nima.2013.06.021
Caamano, 2013, Isotopic yield distributions of transfer- and fusion-induced fission from 238U+12C reactions in inverse kinematics, Phys. Rev. C, 88, 10.1103/PhysRevC.88.024605
du Rietz, 2013, Mapping quasifission characteristics and timescales in heavy element formation reactions, Phys. Rev. C, 88, 10.1103/PhysRevC.88.054618
Baba, 1998, Fast fission mechanism and duality of the diffusion process, Eur. Phys. J. A, 3, 281, 10.1007/s100500050179
Gontchar, 2002, Nuclear dissipation from fission time, Europhys. Lett., 57, 355, 10.1209/epl/i2002-00467-y
Jurado, 2005, Conditions for the manifestation of transient effects in fission, Nucl. Phys. A, 757, 329, 10.1016/j.nuclphysa.2005.04.020
Chadwick, 2011, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, 112, 2887, 10.1016/j.nds.2011.11.002
Schillebeeckx, 1992, Comparative study of the fragments' mass and energy characteristics in the spontaneous fission of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu, Nucl. Phys. A, 545, 623, 10.1016/0375-9474(92)90296-V
Dematte, 1997, Fragments' mass and energy characteristics in the spontaneous fission of 236Pu, 238Pu, 240Pu, 242Pu, and 244Pu, Nucl. Phys. A, 617, 331, 10.1016/S0375-9474(97)00032-8
Hulet, 1989, Spontaneous fission properties of 258Fm, 260Md, 258No and 260104: Bimodal fission, Phys. Rev. C, 40, 770, 10.1103/PhysRevC.40.770
Hoffman, 1990, Spontaneous fission properties of 2.9-s 256No, Phys. Rev. C, 41, 631, 10.1103/PhysRevC.41.631
Hamilton, 1992, Spontaneous fission properties of 259Lr, Phys. Rev. C, 46, 1873, 10.1103/PhysRevC.46.1873
Lane, 1996, Spontaneous fission properties of 252Rf, Phys. Rev. C, 53, 2893, 10.1103/PhysRevC.53.2893
Quade, 1988, Nuclide yields of light fission products from thermal-neutron induced fission of 233U at different kinetic energies, Nucl. Phys. A, 487, 1, 10.1016/0375-9474(88)90127-3
Zhao, 2015, Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides, Phys. Rev. C, 91, 10.1103/PhysRevC.91.014321
Csige, 2013, Exploring the multihumped fission barrier of 238U via sub-barrier photofission, Phys. Rev. C, 87, 10.1103/PhysRevC.87.044321
Schmitt, 1984, Fission yields at different fission-product kinetic energies for the thermal-neutron-induced fission of 239Pu, Nucl. Phys. A, 430, 21, 10.1016/0375-9474(84)90191-X
Djebara, 1989, Mass and nuclear-charge yields for 249Cf(nth,f) at different fission-product kinetic energies, Nucl. Phys. A, 496, 346, 10.1016/0375-9474(89)90179-6
Hentzschel, 1994, Mass, charge and energy distributions in the very asymmetric fission of 249Cf induced by thermal neutrons, Nucl. Phys. A, 571, 427, 10.1016/0375-9474(94)90220-8
Budtz-Joergensen, 1988, Simultaneous investigation of fission fragments and neutrons in 252Cf(sf), Nucl. Phys. A, 490, 307, 10.1016/0375-9474(88)90508-8
IAEA Tecdoc 1168, “Compilation and evaluation of fission yield nuclear data”, IAEA, Vienna, 2000.
Glendenin, 1981, Mass distributions for monoenergetic-neutron-induced fission of 235U, Phys. Rev. C, 24, 2600, 10.1103/PhysRevC.24.2600
Gindler, 1983, Mass distributions in monoenergetic-neutron-induced fission of 239Pu, Phys. Rev. C, 27, 2058, 10.1103/PhysRevC.27.2058
Glendenin, 1980, Mass distribution in monoenergetic-neutron-induced fission of 232Th, Phys. Rev. C, 22, 152, 10.1103/PhysRevC.22.152
Nagy, 1968, Mass distributions in monoenergetic-neutron-induced fission of 238U, Phys. Rev. C, 17, 163, 10.1103/PhysRevC.17.163
Ford, 1965, Fission Mass Yield Dependence on Angular Momentum, Phys. Rev., 137, B826, 10.1103/PhysRev.137.B826
Laurec, 2010, Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons, Nucl. Data Sheets, 111, 2965, 10.1016/j.nds.2010.11.004
Mac Innes, 2011, Fission Product Yields for 14 MeV Neutrons on 235U, 238U and 239Pu, Nucl. Data Sheets, 112, 3135, 10.1016/j.nds.2011.11.009
Chapman, 1978, Fission product yields from 6-9 MeV neutron-induced fission of 235U and 238U, Phys. Rev. C, 17, 1089, 10.1103/PhysRevC.17.1089
Naik, 1995, Systematics of fragment angular momentum in low-energy fission of actinides, Nucl. Phys A, 587, 273, 10.1016/0375-9474(94)00821-4
Naik, 2005, Angular momentum of fission fragments in low energy fission of actinides, Phys. Rev. C, 71, 10.1103/PhysRevC.71.014304
Bail, 2011, Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission, Phys. Rev. C, 84, 10.1103/PhysRevC.84.034605
Naik, 2000, Fission fragment angular momentum in odd-Z fissioning systems, Eur. Phys. J. A, 7, 377, 10.1007/s100500050405
Naik, 1999, Some important aspects of fragment angular momentum in medium energy fission of 238U, Nucl. Phys. A, 648, 45, 10.1016/S0375-9474(98)00639-3
Nichols, 2002, Nuclear data requirements for decay heat calculations
Datta, 1982, Fission fragment angular momentum: Ratios of independent yields of isomers of 95Nb and 132I in thermal-neutron-induced fission of 233U, Phys. Rev. C, 25, 358, 10.1103/PhysRevC.25.358
Ford, 1984, Independent yields of the isomers of 133Xe and 135Xe for neutron-induced fission of 233U, 235U, 238U, and 242Amm, Phys. Rev. C, 30, 195, 10.1103/PhysRevC.30.195
Thierens, 1982, Independent isomeric yield ratio of 134I in the photofission of 235U and 238U, Phys. Rev. C, 25, 1546, 10.1103/PhysRevC.25.1546
D. Regnier, 2015, private communication.
Hulet, 1986, Bimodal Symmetric Fission Observed in the Heaviest Elements, Phys. Rev. Lett., 56, 313, 10.1103/PhysRevLett.56.313
Malinovskij, 1985
Mills, 1995
Manero, 1972, Status of the energy-dependent ν-values for the heavy isotopes (Z > 90) from thermal to 15 MeV and ν-values for spontaneous fission, vol. 10, 637
Budtz-Jorgensen, 1988, Simultaneous investigation of fission fragments and neutrons in 252Cf(sf), Nucl. Phys. A, 490, 307, 10.1016/0375-9474(88)90508-8
Zucker, 1986, Energy Dependence of Neutron Multiplicity in Fast-Neutron-Induced Fission for 235,238U and 239Pu, Report BNL, 38491
Axton, 1985, Evaluation of the thermal neutron constants of 233U, 235U, 239Pu and 241Pu and the fission neutron yield of 252Cf, vol. 335, 214
Kornilov, 2010, The 235U(n,f) prompt fission neutron spectrum at 100 K input neutron energy, Nucl. Science Engin., 165, 117, 10.13182/NSE09-25
Mannhart, 1989, 305
Eismont, 1965, Neutrons from fission of excited nuclei, Atomn. Ener., 19, 113
Maslov, 2003, Prompt fission neutron spectra of 238U(n,f) above emissive fission threshold, Eur. Phys. J. A, 18, 93, 10.1140/epja/i2003-10041-3
Kornilov, 2001, New evidence of an intense scission neutron source in the 252Cf spontaneous fission, Nucl. Phys. A, 686, 187, 10.1016/S0375-9474(00)00561-3
Danilyan, 2008, Angular correlations in emission of prescission neutrons from 235U fission induced by slow polarized neutrons, Phys. Atom. Nucl., 71, 2003, 10.1134/S1063778808120016
Petrov, 2008, Basic results of investigations of scission neutrons in nuclear fission at low excitation energies, Phys. Atom. Nucl., 71, 1137, 10.1134/S1063778808070028
Carjan, 2010, Scission neutrons and other scission properties as function of mass asymmetry in 235U(nth,f), Phys. Rev. C, 82, 10.1103/PhysRevC.82.014617
Bojcov, 1983, Relative measurements of the spectra of prompt fission neutrons for thermal neutron fission of the nuclei 233U, 235U, 239Pu in the energy range 0.01 - 5 MeV, vol. 2, 294
Lajtai, 1985, Prompt neutron spectra for energy range 30 keV - 4 MeV from fission of 233U, 235U, 239Pu induced by thermal neutrons, Nucl. Data Conf., Santa Fe, 1, 613
L.V. Drapchinsky, et al., communicated by N. Capote, 2012.
Vorobyev, 2009, Measurements of angular and energy distributions of prompt neutrons from thermal neutron-induced fission, Nucl. Instrum. Methods A, 598, 795, 10.1016/j.nima.2008.10.017
Boldeman, 1971, Prompt neutrons from 236U fission fragments, Aust. J. Phys., 24, 821, 10.1071/PH710821
Vorobyev, 2010, Angular and energy distributions of prompt neutrons from thermal neutron-induced fission of 233U, 235U(n,F), vol. 17, 60
N.V. Kornilov, vol. 20. 4, 2012, private communation.
Hambsch, 1997, Investigation of the far asymmetric region in 252Cf(sf), Nucl. Phys. A, 617, 347, 10.1016/S0375-9474(97)00040-7
Watt, 1952, Energy Spectrum of Neutrons from Thermal Fission of 235U, Phys. Rev., 87, 103, 10.1103/PhysRev.87.1037
Madland, 1982, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities, Nucl. Sci. Eng., 81, 213, 10.13182/NSE82-5
Madland, 1989, 259
Lemaire, 2005, Monte Carlo approach to sequential neutron emission from fission fragments, Phys. Rev. C, 72, 10.1103/PhysRevC.72.024601
Tudora, 2010, Point by Point model calculation of the prompt neutron multiplicity distribution for spontaneous and neutron induced fission of actinides, Ann. Nucl. Energy, 37, 771, 10.1016/j.anucene.2010.03.004
Vogt, 2012, Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f), Phys. Rev. C, 85, 10.1103/PhysRevC.85.024608
Svirin, 1997, Features of the spectra of neutrons accompanying the neutron-induced emission fission of 238U, Phys. Atom. Nuclei, 60, 727
Trufanov, 2001, Investigation of the spectra of neutrons originating from 238U fission induced by 0.5- and 13.2-MeV neutrons, Phys. Atom. Nuclei, 64, 1, 10.1134/1.1344936
Lovchikova, 2004, Spectra and mean energies of prompt neutrons from 238U fission induced by primary neutrons of energy in the region En < 20 MeV, Phys. Atom. Nuclei, 67, 1246, 10.1134/1.1777281
Maslov, 2007, 239Pu prompt fission neutron spectra, At. Energy, 103, 633, 10.1007/s10512-007-0101-4
Mannhart, 1986, Evaluation of the 252Cf fission neutron spectrum between 0 MeV and 20 MeV, 158
Kornilov, 1999, Computing the Spectra of Prompt Fission Neutrons on the Basis of a New Systematics of Experimental Data, Phys. Atom. Nuclei, 62, 173
Kodeli, 2009, Evaluation and use of the prompt fission neutron spectrum and spectra covariance matrices in criticality and shielding, Nucl. Instrum. Methods A, 610, 540, 10.1016/j.nima.2009.08.076
Maslov, 2011, 235U(n,f), 233U(n,f) and 239Pu(n,f) Prompt Fission Neutron Spectra, J. Korean Phys. Soc., 59, 1337, 10.3938/jkps.59.1337
Manea, 2011, Approach for the fission fragment total kinetic energy TKE(A) calculation: Application to prompt neutron emission models, Ann. Nucl. Energy, 38, 72, 10.1016/j.anucene.2010.08.015
Howerton, 1977, nu-bar revised, Nucl. Sci. Eng., 62, 438, 10.13182/NSE77-A26983
Boykov, 1994, Peculiarities in the neutron spectra accompanying neutron-induced emission fission of actinide nuclei, Nucl. Energy, 21, 585, 10.1016/0306-4549(94)90068-X
Rimpault
A. Oberstedt, 2015, private communication.
Regnier, 2013
Pleasonton, 1972, Prompt Gamma Rays Emitted in the Thermal-Neutron-Induced Fission of 235U, Phys. Rev. C, 6, 1023, 10.1103/PhysRevC.6.1023
Verbinski, 1973, Prompt gamma rays from 235U(n,f), 239Pu(n,f), and spontaneous fission of 252Cf, Phys. Rev. C, 7, 1173, 10.1103/PhysRevC.7.1173
Several predictions have been published for the models considered in the Tables XIV to XVI, using different sets of parameters. We present here the set which gives best agreement with experiment, As for the GEF prediction, default parameters have been used; no specific adjustment to these data was done.
Oberstedt, 2013, Improved values for the characteristics of prompt-fission gamma-ray spectra from the reaction 235U(nth,f), Phys. Rev. C, 87, 10.1103/PhysRevC.87.051602
Becker, 2013, Monte Carlo Hauser-Feshbach predictions of prompt fission gamma rays: Application to nth+235U, nth+239Pu, and 252Cf(sf), Phys. Rev. C, 87, 10.1103/PhysRevC.87.014617
Vogt, 2013, Event-by-event study of photon observables in spontaneous and thermal fission, Phys. Rev. C, 87, 10.1103/PhysRevC.87.044602
Pleasonton, 1973, Prompt gamma rays emitted in the thermal-neutron induced fission of 233U and 239Pu, Nucl. Phys. A, 213, 413, 10.1016/0375-9474(73)90161-9
Chyzh, 2013, Systematics of prompt gamma-ray emission in fission, Phys. Rev. C, 87, 10.1103/PhysRevC.87.034620
Chyzh, 2012, Evidence for the stochastic aspect of prompt gamma emission in spontaneous fission, Phys. Rev. C, 85, 10.1103/PhysRevC.85.021601
Billnert, 2013, New prompt spectral gamma-ray data from the reaction 252Cf(sf) and its implication on present evaluated nuclear data files, Phys. Rev. C, 87, 10.1103/PhysRevC.87.024601
Oberstedt, 2014, High-precision prompt-gamma-ray spectral data from the reaction 241Pu(nth,f), Phys. Rev. C, 90, 10.1103/PhysRevC.90.024618
Maydanyuk, 2010, Bremsstrahlung emission of high energy accompanying spontaneous fission of 252Cf, Phys. Rev. C, 82, 10.1103/PhysRevC.82.014602
Singer, 1997, High-energy gamma-rays in alpha-accompanied spontaneous fission of 252Cf, Z. Phys. A, 359, 41, 10.1007/s002180050365
Pandit, 2010, Coherent bremsstrahlung and GDR width from 252Cf cold fission, Phys. Lett. B, 690, 473, 10.1016/j.physletb.2010.05.079
Hotzel, 1996, High-energy gamma-rays accompanying the spontaneous fission of 252Cf, Z. Phys. A, 356, 299, 10.1007/BF02769233
Schiller, 2000, Extraction of level density and gamma strength function from primary gamma spectra, Nucl. Instrum. Methods Phys. Res. A, 447, 498, 10.1016/S0168-9002(99)01187-0
Toft, 2011, Evolution of the pygmy dipole resonance in Sn isotopes, Phys. Rev. C, 83, 10.1103/PhysRevC.83.044320
Stetcu, 2014, Properties of prompt-fission gamma rays, Phys. Rev. C, 90, 10.1103/PhysRevC.90.024617
Fitzgerald, 1996, Fragment mass dependence of the high-energy gamma-ray spectrum in fission, Z. Phys. A, 355, 401
van der Plög, 1994, Study of the gamma emission probability accompanying the spontaneous fission of 252Cf, Nucl. Phys. A, 569, 83, 10.1016/0375-9474(94)90098-1
Bhattacharya, 2014, Examination of level density prescriptions for the interpretation of high-energy gamma-ray spectra, Phys. Rev. C, 90, 10.1103/PhysRevC.90.054319
Johansson, 1964, Gamma de-excitation of fission fragments: (I). Prompt radiation, Nucl. Phys. A, 60, 378, 10.1016/0029-5582(64)90017-3
Maier-Leibnitz, 1965, Average number and energy of gamma-rays emitted as a function of fragment mass in 235U thermal-neutron-induced fission, vol. II, 143
H. Albinsson and L. Lindow, “Prompt gamma radiation from fragments in the thermal fission of 235U”, Aktiebolaget Atomenergi Studsvik (Nykoping, Sweden) Technical Report No. AE-398, 1970 (unpublished).
Glässel, 1989, 252Cf fission revisited - new insights into the fission process, Nucl. Phys. A, 502, 315c, 10.1016/0375-9474(89)90672-6
Skarsvag, 1967, Angular correlation of fission fragments and prompt gamma rays from slow neutron fission of 235U, Nucl. Phys. A, 96, 385, 10.1016/0375-9474(67)90720-8
Nardi, 1973, Total energy associated with prompt gamma-ray emission in the spontaneous fission of 252Cf, Phys. Rev. C, 8, 2293, 10.1103/PhysRevC.8.2293
Bogachev, 2007, Fission fragment properties obtained in the gamma-gamma-gamma coincidence method in the reaction 208Pb(18O,f), Eur. Phys. J. A, 34, 23, 10.1140/epja/i2007-10485-3
Pelle, 1971, Spectrum of photons emitted in coincidence with fission of 235U by thermal neutrons, Phys. Rev. C, 3, 373, 10.1103/PhysRevC.3.373
Pühlhofer, 1977, On the interpretation of evaporation residue mass distributions in heavy-ion induced fusion reactions, Nucl. Phys., 280, 267, 10.1016/0375-9474(77)90308-6
Hofman, 1993, High energy gamma rays from 252Cf spontaneous fission, Phys. Rev. C, 47, 1103, 10.1103/PhysRevC.47.1103
Skarsvag, 1980, Differential angular distribution of prompt gamma rays from spontaneous fission of 252Cf, Phys. Rev. C, 22, 638, 10.1103/PhysRevC.22.638
M. Jandel et al., “Prompt gamma-ray emission in neutron induced fission of 235U”, LANL Report, LA-UR-12-24975 (2013) (unpublished).
Schmitt, 1984, Angular momentum transfer in 12C-, 20Ne- and 40Ar-induced fission, Nucl. Phys. A, 427, 614, 10.1016/0375-9474(84)90233-1
Baba, 1997, Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes, J. Nucl. Sci. Techn., 34, 871, 10.1080/18811248.1997.9733759
Martin, 2013
Apalin, 1965, Kinetic energy of fragments and energy balance in the fission of 235U by thermal neutrons, Nucl. Phys., 71, 546, 10.1016/0029-5582(65)90764-9
Bail, 2009
Surin, 1972, Yields and kinetic energies of fragments in the fission of 233U and 239Pu by 5.5- and 15-MeV neutrons, Sov. J. Nucl. Phys., 14, 523
Wagemans, 1984, Comparison of the energy and mass characteristics of the 239Pu(nth,f) and the 240Pu(sf) fragments, Phys. Rev. C, 30, 218, 10.1103/PhysRevC.30.218
Tsuchiya, 2000, Simultaneous Measurement of Prompt Neutrons and Fission Fragments for 239Pu(nth,f), J. Nucl. Science Techn., 37, 941, 10.1080/18811248.2000.9714976
Holubarsch, 1971, Fragment kinetic energies in MeV neutron-induced fission of 232Th, Nucl. Phys. A, 171, 631, 10.1016/0375-9474(71)90609-9
Milton, 1962, Time-of-flight fission studies on 233U, 235U and 239Pu, Can. Journ. Phys., 40, 1626, 10.1139/p62-169
Wagemans, 1991
Varapai, 2005, Development of a digital technique for the determination of fission fragments and emitted prompt neutron characteristics, vol. 447, 369
Faust, 2004, Higher moments in the kinetic energy distributions of fission fragments, Nucl. Phys. A, 736, 55, 10.1016/j.nuclphysa.2004.03.001
Straede, 1987, 235U(n,f) fragment mass-, kinetic energy- and angular distributions for incident neutron energies between thermal and 6 MeV, Nucl. Phys. A, 462, 85, 10.1016/0375-9474(87)90381-2
Meadows, 1963, The fission fragment angular distributions and total kinetic energies for 235U(n,f) from 0.18 to 8.83 MeV, Nucl. Data & Meas. Series, ANL/NDM-64
Benoit, 2012
R.A. Forrest, FISPACT2007: User manual, March 2007.
A. Tobias, “Derivation of decay heat benchmarks for 235U and 239Pu by a least squares fit to measured data”, CEGB Report RD/B/6210/R89, May 1989.
Kellet, 2009, The JEFF-3.1/-3.1.1 radioactive decay data and fission yields sublibraries, JEFF Report, 20
Giacri-Mauborgne, 2005
G. Rudstam, P.H. Finck, A. Filip, A. D'Angelo, R.D. McKnight, Delayed neutron data for the major actinides, NEA/WPEC6, and references therein.
Keepin, 1957, Delayed neutrons from fissionable isotopes of uranium, plutonium, and thorium, Phys. Rev., 107, 1044, 10.1103/PhysRev.107.1044
Alexander, 1977, Delayed neutron yield calculations for the neutron-induced fission of uranium-235 as a function of the incident neutron energy, Nucl. Sci. Eng., 62, 627, 10.13182/NSE77-A15206
van Aarle, 1994, 252Cf: neutron multiplicities in correlation with fission-fragment mass and energy, Nucl. Phys. A, 578, 77, 10.1016/0375-9474(94)90970-9
Hambsch, 2005, Prompt fission neutron spectrum evaluation for 252Cf(SF) in the frame of the multi-modal fission model, Ann. Nucl. Energy, 32, 1032, 10.1016/j.anucene.2005.02.006