Gene therapy for monogenic disorders: challenges, strategies, and perspectives
Tài liệu tham khảo
Anguela, 2019, Entering the modern era of gene therapy, Annu. Rev. Med., 70, 273, 10.1146/annurev-med-012017-043332
Anzalone, 2019, Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, 576, 149, 10.1038/s41586-019-1711-4
Arbab, 2023, Base editing rescue of spinal muscular atrophy in cells and in mice, Science, 380, 10.1126/science.adg6518
Banskota, 2022, Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins, Cell, 185, 250, 10.1016/j.cell.2021.12.021
Bertolini, 2021, Effect of CpG depletion of vector genome on CD8+ T cell responses in AAV gene therapy, Front. Immunol., 12, 10.3389/fimmu.2021.672449
Bot, 2022, The double life of CRISPR-Cas13, Curr. Opin. Biotechnol., 78, 10.1016/j.copbio.2022.102789
Bravo, 2022, Structural basis for mismatch surveillance by CRISPR-Cas9, Nature, 603, 343, 10.1038/s41586-022-04470-1
Cecchin, 2023, Extracellular vesicles: the next generation in gene therapy delivery, Mol. Ther., 31, 1225, 10.1016/j.ymthe.2023.01.021
Chan, 2021, Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses, Sci. Transl. Med., 13, 10.1126/scitranslmed.abd3438
Chemello, 2021, Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing, Sci. Adv., 7, 10.1126/sciadv.abg4910
Chen, 2023, Engineering a precise adenine base editor with minimal bystander editing, Nat. Chem. Biol., 19, 101, 10.1038/s41589-022-01163-8
Chen, 2022, Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing, Nat. Biotechnol., 41, 663, 10.1038/s41587-022-01532-7
Chen, 2021, Enhanced prime editing systems by manipulating cellular determinants of editing outcomes, Cell, 184, 5635, 10.1016/j.cell.2021.09.018
Chen, 2020, Gene therapy for neurodegenerative disorders: advances, insights and prospects, Acta Pharm. Sin. B, 10, 1347, 10.1016/j.apsb.2020.01.015
Chen, 2022, Features differ between paroxysmal kinesigenic dyskinesia patients with PRRT2 and TMEM151A variants, Mov. Disord., 37, 608, 10.1002/mds.28939
Cheng, 2020, Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing, Nat. Nanotechnol., 15, 313, 10.1038/s41565-020-0669-6
Clemens, 2020, Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial, JAMA Neurol., 77, 982, 10.1001/jamaneurol.2020.1264
Dautzenberg, 2021, The stability of envelope-pseudotyped lentiviral vectors, Gene Ther., 28, 89, 10.1038/s41434-020-00193-y
Davis, 2022, Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base, Nat. Biomed. Eng., 6, 1272, 10.1038/s41551-022-00911-4
Dong, 2021, Challenges and suggestions for precise diagnosis and treatment of Wilson's disease, World J. Pediatr., 17, 561, 10.1007/s12519-021-00475-4
Duan, 2021, Duchenne muscular dystrophy, Nat. Rev. Dis. Prim., 7, 13, 10.1038/s41572-021-00248-3
Dunbar, 2018, Gene therapy comes of age, Science, 359, 10.1126/science.aan4672
Edraki, 2019, A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing, Mol. Cell, 73, 714, 10.1016/j.molcel.2018.12.003
Esposito, 2022, Liver gene therapy with intein-mediated F8 trans-splicing corrects mouse haemophilia A, EMBO Mol. Med., 14, 10.15252/emmm.202115199
Evers, 2018, AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington's disease minipig model, Mol. Ther., 26, 2163, 10.1016/j.ymthe.2018.06.021
Fitzgerald, 2017, A highly durable RNAi therapeutic inhibitor of PCSK9, N. Engl. J. Med., 376, 41, 10.1056/NEJMoa1609243
Francis, 2021, Preclinical biodistribution, tropism, and efficacy of oligotroph AAV/Olig001 in a mouse model of congenital white matter disease, Mol. Ther. Methods Clin. Dev., 20, 520, 10.1016/j.omtm.2021.01.009
Frank, 2020, Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy, Neurology, 94, e2270, 10.1212/WNL.0000000000009233
Friedmann, 1972, Gene therapy for human genetic disease?, Science, 175, 949, 10.1126/science.175.4025.949
Gao, 2018, Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents, Nature, 553, 217, 10.1038/nature25164
Gillmore, 2021, CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis, N. Engl. J. Med., 385, 493, 10.1056/NEJMoa2107454
Gokirmak, 2021, Overcoming the challenges of tissue delivery for oligonucleotide therapeutics, Trends Pharmacol. Sci., 42, 588, 10.1016/j.tips.2021.04.010
Hamimed, 2022, Nanotechnology in drug and gene delivery, Naunyn-Schmiedeberg’s Arch. Pharmacol., 395, 769, 10.1007/s00210-022-02245-z
Haraszti, 2017, 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo, Nucleic Acids Res., 45, 7581, 10.1093/nar/gkx507
Hu, 2021, Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity, Nucleic Acids Res., 49, 4008, 10.1093/nar/gkab148
Huang, 2023, High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs, Nat. Biotechnol., 41, 96, 10.1038/s41587-022-01410-2
Hull, 2020, Antisense oligonucleotide reverses leukodystrophy in Canavan disease mice, Ann. Neurol., 87, 480, 10.1002/ana.25674
Hussain, 2023, Genetic engineering of bacteriophages: key concepts, strategies, and applications, Biotechnol. Adv., 64, 10.1016/j.biotechadv.2023.108116
Ikwuagwu, 2022, Virus-like particles for drug delivery: a review of methods and applications, Curr. Opin. Biotechnol., 78, 10.1016/j.copbio.2022.102785
Imbert, 2019, Lowering mutant huntingtin using tricyclo-DNA antisense oligonucleotides as a therapeutic approach for Huntington's disease, Nucleic Acid Therapeut., 29, 256, 10.1089/nat.2018.0775
Jang, 2021, High-purity production and precise editing of DNA base editing ribonucleoproteins, Sci. Adv., 7, 10.1126/sciadv.abg2661
Jo, 2023, Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing, Mol. Ther. Nucleic Acids, 31, 16, 10.1016/j.omtn.2022.11.021
Kalluri, 2020, The biology, function, and biomedical applications of exosomes, Science, 367, 10.1126/science.aau6977
Kelleher, 2019, Patient-specific iPSC model of a genetic vascular dementia syndrome reveals failure of mural cells to stabilize capillary structures, Stem Cell Rep., 13, 817, 10.1016/j.stemcr.2019.10.004
Kimiz-Gebologlu, 2022, Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake, J. Contr. Release, 347, 533, 10.1016/j.jconrel.2022.05.027
Koblan, 2021, In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice, Nature, 589, 608, 10.1038/s41586-020-03086-7
Komaki, 2018, Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy, Sci. Transl. Med., 10, 10.1126/scitranslmed.aan0713
Lam, 2023, Improved cytosine base editors generated from TadA variants, Nat. Biotechnol., 41, 686, 10.1038/s41587-022-01611-9
Levy, 2020, Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses, Nat. Biomed. Eng., 4, 97, 10.1038/s41551-019-0501-5
Li, 2021, In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal gamma-globin in beta-YAC mice, Blood Adv., 5, 1122, 10.1182/bloodadvances.2020003702
Li, 2020, Engineering adeno-associated virus vectors for gene therapy, Nat. Rev. Genet., 21, 255, 10.1038/s41576-019-0205-4
Li, 2019, Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing, J. Genet. Genomics, 46, 513, 10.1016/j.jgg.2019.11.002
Li, 2020, A tunable, rapid, and precise drug control of protein expression by combining transcriptional and post-translational regulation systems, J. Genet. Genomics, 47, 705, 10.1016/j.jgg.2020.07.009
Li, 2020, Programmable base editing of mutated TERT promoter inhibits brain tumour growth, Nat. Cell Biol., 22, 282, 10.1038/s41556-020-0471-6
Lim, 2020, Treatment of a mouse model of ALS by in vivo base editing, Mol. Ther., 28, 1177, 10.1016/j.ymthe.2020.01.005
Luo, 2022, Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases, Adv. Sci., 9, 10.1002/advs.202201740
Maguire, 2019, Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials, Ophthalmology, 126, 1273, 10.1016/j.ophtha.2019.06.017
Martier, 2019, Targeting RNA-mediated toxicity in C9orf72 ALS and/or FTD by RNAi-based gene therapy, Mol. Ther. Nucleic Acids, 16, 26, 10.1016/j.omtn.2019.02.001
Martier, 2019, Artificial microRNAs targeting C9orf72 can reduce accumulation of intra-nuclear transcripts in ALS and FTD patients, Mol. Ther. Nucleic Acids, 14, 593, 10.1016/j.omtn.2019.01.010
Mendell, 2017, Single-dose gene-replacement therapy for spinal muscular atrophy, N. Engl. J. Med., 377, 1713, 10.1056/NEJMoa1706198
Mendell, 2016, Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy, Ann. Neurol., 79, 257, 10.1002/ana.24555
Mendell, 2020, Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a monrandomized controlled trial, JAMA Neurol., 77, 1122, 10.1001/jamaneurol.2020.1484
Mercuri, 2022, Spinal muscular atrophy, Nat. Rev. Dis. Prim., 8, 52, 10.1038/s41572-022-00380-8
Miesbach, 2018, Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B, Blood, 131, 1022, 10.1182/blood-2017-09-804419
Mietzsch, 2020, Comparative analysis of the capsid structures of AAVrh.10, AAVrh.39, and AAV8, J. Virol., 94, 10.1128/JVI.01769-19
Miller, 2022, Trial of antisense oligonucleotide tofersen for SOD1 ALS, N. Engl. J. Med., 387, 1099, 10.1056/NEJMoa2204705
Mitchell, 2021, Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov., 20, 101, 10.1038/s41573-020-0090-8
Monteys, 2021, Regulated control of gene therapies by drug-induced splicing, Nature, 596, 291, 10.1038/s41586-021-03770-2
Moreira, 2021, Advances in lentivirus purification, Biotechnol. J., 16, 10.1002/biot.202000019
Mueller, 2020, SOD1 suppression with adeno-associated virus and microRNA in familial ALS, N. Engl. J. Med., 383, 151, 10.1056/NEJMoa2005056
Muhuri, 2021, Overcoming innate immune barriers that impede AAV gene therapy vectors, J. Clin. Invest., 131, 10.1172/JCI143780
Musunuru, 2021, In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates, Nature, 593, 429, 10.1038/s41586-021-03534-y
Nagata, 2021, Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS, Nat. Biotechnol., 39, 1529, 10.1038/s41587-021-00972-x
Pacesa, 2022, Structural basis for Cas9 off-target activity, Cell, 185, 4067, 10.1016/j.cell.2022.09.026
Padula, 2022, Full-length ATP7B reconstituted through protein trans-splicing corrects Wilson disease in mice, Mol. Ther. Methods Clin. Dev., 26, 495, 10.1016/j.omtm.2022.08.004
Paunovska, 2022, Drug delivery systems for RNA therapeutics, Nat. Rev. Genet., 23, 265, 10.1038/s41576-021-00439-4
Petrich, 2020, Gene replacement therapy: a primer for the health-system pharmacist, J. Pharm. Pract., 33, 846, 10.1177/0897190019854962
Raguram, 2022, Therapeutic in vivo delivery of gene editing agents, Cell, 185, 2806, 10.1016/j.cell.2022.03.045
Ravi, 2021, Gene-targeting therapeutics for neurological disease: lessons learned from spinal muscular atrophy, Annu. Rev. Med., 72, 1, 10.1146/annurev-med-070119-115459
Rees, 2018, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet., 19, 770, 10.1038/s41576-018-0059-1
Roberts, 2020, Advances in oligonucleotide drug delivery, Nat. Rev. Drug Discov., 19, 673, 10.1038/s41573-020-0075-7
Roth, 2021, Genetic disease and therapy, Annu. Rev. Pathol., 16, 145, 10.1146/annurev-pathmechdis-012419-032626
Rothgangl, 2021, In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels, Nat. Biotechnol., 39, 949, 10.1038/s41587-021-00933-4
Sardh, 2019, Phase 1 trial of an RNA interference therapy for acute intermittent porphyria, N. Engl. J. Med., 380, 549, 10.1056/NEJMoa1807838
Scharner, 2021, Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics, Mol. Ther., 29, 540, 10.1016/j.ymthe.2020.12.022
Schuler, 2022, Structural basis for RNA-guided DNA cleavage by IscB-omegaRNA and mechanistic comparison with Cas9, Science, 376, 1476, 10.1126/science.abq7220
Suh, 2021, Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing, Nat. Biomed. Eng., 5, 169, 10.1038/s41551-020-00632-6
Sun, 2021, Gene-based therapies for neurodegenerative diseases, Nat. Neurosci., 24, 297, 10.1038/s41593-020-00778-1
Tabrizi, 2019, Targeting huntingtin expression in patients with Huntington's disease, N. Engl. J. Med., 380, 2307, 10.1056/NEJMoa1900907
Tai, 2019, Current aspects of siRNA bioconjugate for in vitro and in vivo delivery, Molecules, 24, 2211, 10.3390/molecules24122211
Tornabene, 2019, Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina, Sci. Transl. Med., 11, 10.1126/scitranslmed.aav4523
Tran, 2022, Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide, Nat. Med., 28, 117, 10.1038/s41591-021-01557-6
Verdera, 2020, AAV vector immunogenicity in humans: a long journey to successful gene transfer, Mol. Ther., 28, 723, 10.1016/j.ymthe.2019.12.010
Von Drygalski, 2019, Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B, Blood Adv., 3, 3241, 10.1182/bloodadvances.2019000811
Wagner, 2021, Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double-blind, placebo-controlled, dose-titration trial, Muscle Nerve, 64, 285, 10.1002/mus.27347
Wang, 2019, Adeno-associated virus vector as a platform for gene therapy delivery, Nat. Rev. Drug Discov., 18, 358, 10.1038/s41573-019-0012-9
Wang, 2020, CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors, Cell, 181, 136, 10.1016/j.cell.2020.03.023
Wang, 2021, Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations, Nat. Cell Biol., 23, 552, 10.1038/s41556-021-00671-4
Weissbach, 2022, Relationship of genotype, phenotype, and treatment in dopa-responsive dystonia: MDSGene review, Mov. Disord., 37, 237, 10.1002/mds.28874
Wilson, 2020, Moving forward after two deaths in a gene therapy trial of myotubular myopathy, Hum. Gene Ther., 31, 695, 10.1089/hum.2020.182
Yang, 2017, CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease, J. Clin. Invest., 127, 2719, 10.1172/JCI92087
Yin, 2017, Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing, Nat. Biotechnol., 35, 1179, 10.1038/nbt.4005
Zhu, 2021, Adeno-associated virus vector for central nervous system gene therapy, Trends Mol. Med., 27, 524, 10.1016/j.molmed.2021.03.010