Gene therapy for monogenic disorders: challenges, strategies, and perspectives

Yi Zhang1,2,3, Zhi-Ying Wu1,2,3
1Department of Medical Genetics and Center for Rare Diseases, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
2Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
3Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang 310009, China

Tài liệu tham khảo

Anguela, 2019, Entering the modern era of gene therapy, Annu. Rev. Med., 70, 273, 10.1146/annurev-med-012017-043332 Anzalone, 2019, Search-and-replace genome editing without double-strand breaks or donor DNA, Nature, 576, 149, 10.1038/s41586-019-1711-4 Arbab, 2023, Base editing rescue of spinal muscular atrophy in cells and in mice, Science, 380, 10.1126/science.adg6518 Banskota, 2022, Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins, Cell, 185, 250, 10.1016/j.cell.2021.12.021 Bertolini, 2021, Effect of CpG depletion of vector genome on CD8+ T cell responses in AAV gene therapy, Front. Immunol., 12, 10.3389/fimmu.2021.672449 Bot, 2022, The double life of CRISPR-Cas13, Curr. Opin. Biotechnol., 78, 10.1016/j.copbio.2022.102789 Bravo, 2022, Structural basis for mismatch surveillance by CRISPR-Cas9, Nature, 603, 343, 10.1038/s41586-022-04470-1 Cecchin, 2023, Extracellular vesicles: the next generation in gene therapy delivery, Mol. Ther., 31, 1225, 10.1016/j.ymthe.2023.01.021 Chan, 2021, Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses, Sci. Transl. Med., 13, 10.1126/scitranslmed.abd3438 Chemello, 2021, Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing, Sci. Adv., 7, 10.1126/sciadv.abg4910 Chen, 2023, Engineering a precise adenine base editor with minimal bystander editing, Nat. Chem. Biol., 19, 101, 10.1038/s41589-022-01163-8 Chen, 2022, Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing, Nat. Biotechnol., 41, 663, 10.1038/s41587-022-01532-7 Chen, 2021, Enhanced prime editing systems by manipulating cellular determinants of editing outcomes, Cell, 184, 5635, 10.1016/j.cell.2021.09.018 Chen, 2020, Gene therapy for neurodegenerative disorders: advances, insights and prospects, Acta Pharm. Sin. B, 10, 1347, 10.1016/j.apsb.2020.01.015 Chen, 2022, Features differ between paroxysmal kinesigenic dyskinesia patients with PRRT2 and TMEM151A variants, Mov. Disord., 37, 608, 10.1002/mds.28939 Cheng, 2020, Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing, Nat. Nanotechnol., 15, 313, 10.1038/s41565-020-0669-6 Clemens, 2020, Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial, JAMA Neurol., 77, 982, 10.1001/jamaneurol.2020.1264 Dautzenberg, 2021, The stability of envelope-pseudotyped lentiviral vectors, Gene Ther., 28, 89, 10.1038/s41434-020-00193-y Davis, 2022, Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base, Nat. Biomed. Eng., 6, 1272, 10.1038/s41551-022-00911-4 Dong, 2021, Challenges and suggestions for precise diagnosis and treatment of Wilson's disease, World J. Pediatr., 17, 561, 10.1007/s12519-021-00475-4 Duan, 2021, Duchenne muscular dystrophy, Nat. Rev. Dis. Prim., 7, 13, 10.1038/s41572-021-00248-3 Dunbar, 2018, Gene therapy comes of age, Science, 359, 10.1126/science.aan4672 Edraki, 2019, A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing, Mol. Cell, 73, 714, 10.1016/j.molcel.2018.12.003 Esposito, 2022, Liver gene therapy with intein-mediated F8 trans-splicing corrects mouse haemophilia A, EMBO Mol. Med., 14, 10.15252/emmm.202115199 Evers, 2018, AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington's disease minipig model, Mol. Ther., 26, 2163, 10.1016/j.ymthe.2018.06.021 Fitzgerald, 2017, A highly durable RNAi therapeutic inhibitor of PCSK9, N. Engl. J. Med., 376, 41, 10.1056/NEJMoa1609243 Francis, 2021, Preclinical biodistribution, tropism, and efficacy of oligotroph AAV/Olig001 in a mouse model of congenital white matter disease, Mol. Ther. Methods Clin. Dev., 20, 520, 10.1016/j.omtm.2021.01.009 Frank, 2020, Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy, Neurology, 94, e2270, 10.1212/WNL.0000000000009233 Friedmann, 1972, Gene therapy for human genetic disease?, Science, 175, 949, 10.1126/science.175.4025.949 Gao, 2018, Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents, Nature, 553, 217, 10.1038/nature25164 Gillmore, 2021, CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis, N. Engl. J. Med., 385, 493, 10.1056/NEJMoa2107454 Gokirmak, 2021, Overcoming the challenges of tissue delivery for oligonucleotide therapeutics, Trends Pharmacol. Sci., 42, 588, 10.1016/j.tips.2021.04.010 Hamimed, 2022, Nanotechnology in drug and gene delivery, Naunyn-Schmiedeberg’s Arch. Pharmacol., 395, 769, 10.1007/s00210-022-02245-z Haraszti, 2017, 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo, Nucleic Acids Res., 45, 7581, 10.1093/nar/gkx507 Hu, 2021, Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity, Nucleic Acids Res., 49, 4008, 10.1093/nar/gkab148 Huang, 2023, High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs, Nat. Biotechnol., 41, 96, 10.1038/s41587-022-01410-2 Hull, 2020, Antisense oligonucleotide reverses leukodystrophy in Canavan disease mice, Ann. Neurol., 87, 480, 10.1002/ana.25674 Hussain, 2023, Genetic engineering of bacteriophages: key concepts, strategies, and applications, Biotechnol. Adv., 64, 10.1016/j.biotechadv.2023.108116 Ikwuagwu, 2022, Virus-like particles for drug delivery: a review of methods and applications, Curr. Opin. Biotechnol., 78, 10.1016/j.copbio.2022.102785 Imbert, 2019, Lowering mutant huntingtin using tricyclo-DNA antisense oligonucleotides as a therapeutic approach for Huntington's disease, Nucleic Acid Therapeut., 29, 256, 10.1089/nat.2018.0775 Jang, 2021, High-purity production and precise editing of DNA base editing ribonucleoproteins, Sci. Adv., 7, 10.1126/sciadv.abg2661 Jo, 2023, Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing, Mol. Ther. Nucleic Acids, 31, 16, 10.1016/j.omtn.2022.11.021 Kalluri, 2020, The biology, function, and biomedical applications of exosomes, Science, 367, 10.1126/science.aau6977 Kelleher, 2019, Patient-specific iPSC model of a genetic vascular dementia syndrome reveals failure of mural cells to stabilize capillary structures, Stem Cell Rep., 13, 817, 10.1016/j.stemcr.2019.10.004 Kimiz-Gebologlu, 2022, Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake, J. Contr. Release, 347, 533, 10.1016/j.jconrel.2022.05.027 Koblan, 2021, In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice, Nature, 589, 608, 10.1038/s41586-020-03086-7 Komaki, 2018, Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy, Sci. Transl. Med., 10, 10.1126/scitranslmed.aan0713 Lam, 2023, Improved cytosine base editors generated from TadA variants, Nat. Biotechnol., 41, 686, 10.1038/s41587-022-01611-9 Levy, 2020, Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses, Nat. Biomed. Eng., 4, 97, 10.1038/s41551-019-0501-5 Li, 2021, In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal gamma-globin in beta-YAC mice, Blood Adv., 5, 1122, 10.1182/bloodadvances.2020003702 Li, 2020, Engineering adeno-associated virus vectors for gene therapy, Nat. Rev. Genet., 21, 255, 10.1038/s41576-019-0205-4 Li, 2019, Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing, J. Genet. Genomics, 46, 513, 10.1016/j.jgg.2019.11.002 Li, 2020, A tunable, rapid, and precise drug control of protein expression by combining transcriptional and post-translational regulation systems, J. Genet. Genomics, 47, 705, 10.1016/j.jgg.2020.07.009 Li, 2020, Programmable base editing of mutated TERT promoter inhibits brain tumour growth, Nat. Cell Biol., 22, 282, 10.1038/s41556-020-0471-6 Lim, 2020, Treatment of a mouse model of ALS by in vivo base editing, Mol. Ther., 28, 1177, 10.1016/j.ymthe.2020.01.005 Luo, 2022, Delivering the promise of gene therapy with nanomedicines in treating central nervous system diseases, Adv. Sci., 9, 10.1002/advs.202201740 Maguire, 2019, Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials, Ophthalmology, 126, 1273, 10.1016/j.ophtha.2019.06.017 Martier, 2019, Targeting RNA-mediated toxicity in C9orf72 ALS and/or FTD by RNAi-based gene therapy, Mol. Ther. Nucleic Acids, 16, 26, 10.1016/j.omtn.2019.02.001 Martier, 2019, Artificial microRNAs targeting C9orf72 can reduce accumulation of intra-nuclear transcripts in ALS and FTD patients, Mol. Ther. Nucleic Acids, 14, 593, 10.1016/j.omtn.2019.01.010 Mendell, 2017, Single-dose gene-replacement therapy for spinal muscular atrophy, N. Engl. J. Med., 377, 1713, 10.1056/NEJMoa1706198 Mendell, 2016, Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy, Ann. Neurol., 79, 257, 10.1002/ana.24555 Mendell, 2020, Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a monrandomized controlled trial, JAMA Neurol., 77, 1122, 10.1001/jamaneurol.2020.1484 Mercuri, 2022, Spinal muscular atrophy, Nat. Rev. Dis. Prim., 8, 52, 10.1038/s41572-022-00380-8 Miesbach, 2018, Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B, Blood, 131, 1022, 10.1182/blood-2017-09-804419 Mietzsch, 2020, Comparative analysis of the capsid structures of AAVrh.10, AAVrh.39, and AAV8, J. Virol., 94, 10.1128/JVI.01769-19 Miller, 2022, Trial of antisense oligonucleotide tofersen for SOD1 ALS, N. Engl. J. Med., 387, 1099, 10.1056/NEJMoa2204705 Mitchell, 2021, Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov., 20, 101, 10.1038/s41573-020-0090-8 Monteys, 2021, Regulated control of gene therapies by drug-induced splicing, Nature, 596, 291, 10.1038/s41586-021-03770-2 Moreira, 2021, Advances in lentivirus purification, Biotechnol. J., 16, 10.1002/biot.202000019 Mueller, 2020, SOD1 suppression with adeno-associated virus and microRNA in familial ALS, N. Engl. J. Med., 383, 151, 10.1056/NEJMoa2005056 Muhuri, 2021, Overcoming innate immune barriers that impede AAV gene therapy vectors, J. Clin. Invest., 131, 10.1172/JCI143780 Musunuru, 2021, In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates, Nature, 593, 429, 10.1038/s41586-021-03534-y Nagata, 2021, Cholesterol-functionalized DNA/RNA heteroduplexes cross the blood-brain barrier and knock down genes in the rodent CNS, Nat. Biotechnol., 39, 1529, 10.1038/s41587-021-00972-x Pacesa, 2022, Structural basis for Cas9 off-target activity, Cell, 185, 4067, 10.1016/j.cell.2022.09.026 Padula, 2022, Full-length ATP7B reconstituted through protein trans-splicing corrects Wilson disease in mice, Mol. Ther. Methods Clin. Dev., 26, 495, 10.1016/j.omtm.2022.08.004 Paunovska, 2022, Drug delivery systems for RNA therapeutics, Nat. Rev. Genet., 23, 265, 10.1038/s41576-021-00439-4 Petrich, 2020, Gene replacement therapy: a primer for the health-system pharmacist, J. Pharm. Pract., 33, 846, 10.1177/0897190019854962 Raguram, 2022, Therapeutic in vivo delivery of gene editing agents, Cell, 185, 2806, 10.1016/j.cell.2022.03.045 Ravi, 2021, Gene-targeting therapeutics for neurological disease: lessons learned from spinal muscular atrophy, Annu. Rev. Med., 72, 1, 10.1146/annurev-med-070119-115459 Rees, 2018, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet., 19, 770, 10.1038/s41576-018-0059-1 Roberts, 2020, Advances in oligonucleotide drug delivery, Nat. Rev. Drug Discov., 19, 673, 10.1038/s41573-020-0075-7 Roth, 2021, Genetic disease and therapy, Annu. Rev. Pathol., 16, 145, 10.1146/annurev-pathmechdis-012419-032626 Rothgangl, 2021, In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels, Nat. Biotechnol., 39, 949, 10.1038/s41587-021-00933-4 Sardh, 2019, Phase 1 trial of an RNA interference therapy for acute intermittent porphyria, N. Engl. J. Med., 380, 549, 10.1056/NEJMoa1807838 Scharner, 2021, Clinical applications of single-stranded oligonucleotides: current landscape of approved and in-development therapeutics, Mol. Ther., 29, 540, 10.1016/j.ymthe.2020.12.022 Schuler, 2022, Structural basis for RNA-guided DNA cleavage by IscB-omegaRNA and mechanistic comparison with Cas9, Science, 376, 1476, 10.1126/science.abq7220 Suh, 2021, Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing, Nat. Biomed. Eng., 5, 169, 10.1038/s41551-020-00632-6 Sun, 2021, Gene-based therapies for neurodegenerative diseases, Nat. Neurosci., 24, 297, 10.1038/s41593-020-00778-1 Tabrizi, 2019, Targeting huntingtin expression in patients with Huntington's disease, N. Engl. J. Med., 380, 2307, 10.1056/NEJMoa1900907 Tai, 2019, Current aspects of siRNA bioconjugate for in vitro and in vivo delivery, Molecules, 24, 2211, 10.3390/molecules24122211 Tornabene, 2019, Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina, Sci. Transl. Med., 11, 10.1126/scitranslmed.aav4523 Tran, 2022, Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide, Nat. Med., 28, 117, 10.1038/s41591-021-01557-6 Verdera, 2020, AAV vector immunogenicity in humans: a long journey to successful gene transfer, Mol. Ther., 28, 723, 10.1016/j.ymthe.2019.12.010 Von Drygalski, 2019, Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B, Blood Adv., 3, 3241, 10.1182/bloodadvances.2019000811 Wagner, 2021, Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double-blind, placebo-controlled, dose-titration trial, Muscle Nerve, 64, 285, 10.1002/mus.27347 Wang, 2019, Adeno-associated virus vector as a platform for gene therapy delivery, Nat. Rev. Drug Discov., 18, 358, 10.1038/s41573-019-0012-9 Wang, 2020, CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors, Cell, 181, 136, 10.1016/j.cell.2020.03.023 Wang, 2021, Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations, Nat. Cell Biol., 23, 552, 10.1038/s41556-021-00671-4 Weissbach, 2022, Relationship of genotype, phenotype, and treatment in dopa-responsive dystonia: MDSGene review, Mov. Disord., 37, 237, 10.1002/mds.28874 Wilson, 2020, Moving forward after two deaths in a gene therapy trial of myotubular myopathy, Hum. Gene Ther., 31, 695, 10.1089/hum.2020.182 Yang, 2017, CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease, J. Clin. Invest., 127, 2719, 10.1172/JCI92087 Yin, 2017, Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing, Nat. Biotechnol., 35, 1179, 10.1038/nbt.4005 Zhu, 2021, Adeno-associated virus vector for central nervous system gene therapy, Trends Mol. Med., 27, 524, 10.1016/j.molmed.2021.03.010