Gene-targeting technologies for the study of neurological disorders
Tóm tắt
Studies using genetic manipulations have proven invaluable in the research of neurological disorders. In the forefront of these approaches is the knockout technology that engineers a targeted gene mutation in mice resulting in inactivation of gene expression. In many cases, important roles of a particular gene in embryonic development have precluded the in vivo study of its function in the adult brain, which is usually the most relevant experimental context for the study of neurological disorders. The conditional knockout technology has provided a tool to overcome this restriction and has been used successfully to generate viable mouse models with gene inactivation patterns in certain regions or cell types of the postnatal brain. This review first describes the methodology of gene targeting in mice, detailing the aspects of designing a targeting vector, introducing it into embryonic stem cells in culture and screening for correct recombination events, and generating chimeric and null mutant mice from the positive clones. It then discusses the special issues and considerations for the generation of conditional knock-out mice, including a section about approaches for inducible gene inactivation in the brain and some of their applications. An overview of gene-targeted mouse models that have been used in the study of several neurological disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, seizure disorders, and schizophrenia, is also presented. The importance of the results obtained by these models for the understanding of the pathogenic mechanism underlying the disorders is discussed.
Tài liệu tham khảo
Backman S. A., Stambolic V., Suzuki A., et al. (2001) Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte—Duclos disease. Nat. Genet. 29, 396–403.
Banbury Conference on Genetic Background in Mice (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19, 755–759.
Beglopoulos V., Sun X., Saura C. A., Lemere C. A., Kim R. D., and Shen J. (2004) Reduced β-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. J. Biol. Chem. 97, 46907–46914.
Bonifati V., Rizzu P., van Baren M. J., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.
Campos V. E., Du M., and Li Y. (2004) Increased seizure susceptibility and cortical malformation in β-catenin mutant mice. Biochem. Biophys. Res. Commun. 320, 606–614.
Cattaneo E., Rigamonti D., Goffredo D., Zuccato C., Squitieri F., and Sipione S. (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci. 24, 182–188.
De Strooper B., Annaert W., Cupers P., et al. (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522.
De Strooper B., Saftig P., Craessaerts K., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390.
Dragatsis I., Levine M. S., and Zeitlin S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300–306.
Duyao M. P., Auerbach A. B., Ryan A., et al. (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269, 407–410.
Dymecki S. M. (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196.
Fasen K., Beck H., Elger C. E., and Lie A. A. (2002) Differential regulation of cadherins and catenins during axonal reorganization in the adult rat CNS. J. Neuropathol. Exp. Neurol. 61, 903–913.
Feil R., Brocard J., Mascrez B., LeMeur M., Metzger D., and Chambon P. (1996) Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10,887–10,890.
Gerber D. J., Hall D., Miyakawa T., et al. (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc. Natl. Acad. Sci. USA 100, 8993–8998.
Goldberg M. S., Fleming S. M., Palacino J. J., et al. (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43,628–43,635.
Gondo Y., Nakamura K., Nakao K., et al. (1994) Gene replacement of the p53 gene with the lacZ gene in mouse embryonic stem cells and mice by using two steps of homologous recombination. Biochem. Biophys. Res. Commun. 202, 830–837.
Gossen M. and Bujard H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.
Gossen M., Freundlieb S., Bender G., Muller G., Hillen W., and Bujard H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.
Haegel H., Larue L., Ohsugi M., Fedorov L., Herrenknecht K., and Kemler R. (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121, 3529–3537.
Harrison P. J. and Weinberger D. R. (2004) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatr. July 20 [Epub ahead of print]
Heber S., Herms J., Gajic V., et al. (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20, 7951–7963.
Herreman A., Hartmann D., Annaert W., et al. (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl. Acad. Sci. USA 96, 11,872–11,877.
Hooper M., Hardy K., Handyside A., Hunter S., and Monk M. (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295.
Huang C. C., Faber P. W., Persichetti F., et al. (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell. Mol. Genet. 24, 217–233.
Hutton M. and Hardy J. (1997) The presenilins and Alzheimer’s disease. Hum. Mol. Genet. 6, 1639–1646.
Itier J.-M., Ibanez P., Mena M. A., et al. (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum. Mol. Genet. 12, 2277–2291.
Kazantsev A., Preisinger E., Dranovsky A., Goldgaber D., and Housman D. (1999) Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 11,404–11,409.
Kellendonk C., Tronche F., Casanova E., Anlag K., Opherk C., and Schutz G. (1999) Inducible site-specific recombination in the brain. J. Mol. Biol. 285, 175–182.
Kimball A. S., Kimball M. L., Jayaram M., and Tullius T. D. (1995) Chemical probe and missing nucleoside analysis of Flp recombinase bound to the recombination target sequence. Nucleic Acids Res. 23, 3009–3017.
Kuehn M. R., Bradley A., Robertson E. J., and Evans M. J. (1987) A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298.
Kuhn R., Schwenk F., Aguet M., and Rajewsky K. (1995) Inducible gene targeting in mice. Science 269, 1427–1429.
Kwon C. H., Zhu X., Zhang J., et al. (2001) Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat. Genet. 29, 404–411.
Kwon C. H., Zhu X., Zhang J., and Baker S. J. (2003) mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA 100, 12,923–12,928.
Lang A. E. and Lozano A. M. (1998) Parkinson’s disease. First of two parts. N. Engl. J. Med. 339, 1044–1053.
Lewandoski M. (2001) Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755.
Lijam N., Paylor R., McDonald M. P., et al. (1997) Social interaction and sensorimotor gating abnormalities in mice lacking Dv11. Cell 90, 895–905.
Lindeberg J., Mattsson R., and Ebendal T. (2002) Timing the doxycycline yields different patterns of genomic recombination in brain neurons with a new inducible Cre transgene. J. Neurosci. Res. 68, 248–253.
Madsen T. M., Newton S. S., Eaton M. E., Russell D. S., and Duman R. S. (2003) Chronic electroconvulsive seizure up-regulates beta-catenin expression in rathippocampus: role in adult neurogenesis. Biol. Psychiatr. 54, 1006–1014.
Malleret G., Haditsch U., Genoux D., et al. (2001) Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686.
Mantamadiotis T., Lemberger T., Bleckmann S. C., et al. (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 47–54.
Marsicano G., Goodenough S., Monory K., et al. (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88.
Mayford M., Bach M.E., Huang Y. Y., Wang L., Hawkins R. D., and Kandel E. R. (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683.
McNamara J. O. (1999) Emerging insights into the genesis of epilepsy. Nature 399, A15-A22.
Menalled L. B. and Chesselet M. F. (2002) Mouse models of Huntington’s disease. Trends Pharmacol. Sci. 23, 32–39.
Metzger D. and Feil R. (1999) Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10, 470–476.
Mills A. A. (2001) Changing colors in mice: an inducible system that delivers. Gene Dev. 15, 1461–1467.
Miyakawa T., Leiter L. M., Gerber D. J., et al. (2003) Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc. Natl. Acad. Sci. USA 100, 8987–8992.
Mohn A. R., Gainetdinov R. R., Caron M. G., and Koller B. H. (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436.
Morozov A., Kellendonk C., Simpson E., and Tronche F. (2003) Using conditional mutagenesis to study the brain. Biol. Psychiatr. 54, 1125–1133.
Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.
Narain Y., Wyttenbach A., Rankin J., Furlong R. A., and Rubinsztein D. C. (1999) A molecular investigation of true dominance in Huntington’s disease. J. Med. Genet. 36, 739–746.
Nasir J., Floresco S. B., O’Kusky J. R., et al. (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823.
Noebels J. L. (2003) The biology of epilepsy genes. Annu. Rev. Neurosci. 26, 599–625.
Olson E. N., Arnold H. H., Rigby P. W., and Wold B. J. (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85, 1–4.
Palacino J. J., Sagi D., Goldberg M. S., et al. (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279, 18,614–18,622.
Pittenger C., Huang Y. Y., Paletzki R. F., et al. (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447–462.
Rubinsztein D. C. (2002) Lessons from animal models of Huntington’s disease. Trends Genet. 18, 202–209.
Rusnak F. and Mertz P. (2000) Calcineurin: form and function. Physiol. Rev. 80, 1483–1521.
Saura C. A., Choi S. Y., Beglopoulos V., et al. (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36.
Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., and Tonegawa S. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639.
Shimizu E., Tang Y. P., Rampon C., and Tsien J. Z. (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290, 1170–1174.
Simon D., Seznec H., Gansmuller A., et al. (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J. Neurosci. 24, 1987–1995.
Steiner H., Duff K., Capell A., et al. (1999) A loss of function mutation of presenilin-2 interferes with amyloid beta-peptide production and notch signaling. J. Biol. Chem. 274, 28,669–28,673.
Sternberg N. and Hamilton D. (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol. 150, 467–486.
The Huntington’s Disease Collaborative Research Group (1993) Anovel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.
Tronche F., Casanova E., Turiault M., Sahly I., and Kellendonk C. (2002) When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett. 529, 116–121.
Uhlmann E. J., Wong M., Baldwin R. L., et al. (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann. Neurol. 52, 285–296.
Utomo A. R. H., Nikitin A. Y., and Lee W. H. (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat. Biotechnol. 17, 1091–1096.
Valente E. M., Abou-Sleiman P. M., Caputo V., et al. (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160.
Vaughan J. R., Davis M. B., and Wood N. W. (2001) Genetics of Parkinsonism: a review. Ann. Hum. Genet. 65, 111–126.
von Coelln R., Thomas B., Savitt J. M., et al. (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc. Natl. Acad. Sci. USA 101, 10,744–10,749.
von Koch C. S., Zheng H., Chen H., et al. (1997) Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice. Neurobiol. Aging 18, 661–669.
Weber P., Metzger D., and Chambon P. (2001) Temporally controlled targeted somatic mutagenesis in the mouse brain. Eur. J. Neurosci. 14, 1777–1783.
Wheeler V. C., White J. K., Gutekunst C. A., et al. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9, 503–513.
Wolfer D. P., Crusio W. E., and Lipp H. P. (2002) Knock-out mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 25, 336–340.
Wong M., Ess K. C., Uhlmann E. J., et al. (2003) Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol. 54, 251–256.
Xia X., Qian S., Soriano S., et al. (2001) Loss of presenilin 1 is associated with enhanced beta-catenin signaling and skin tumorigenesis. Proc. Natl. Acad. Sci. USA 98, 10,863–10,868.
Yu H., Kessler J., and Shen J. (2000) Heterogeneous populations of ES cells in the generation of a floxed Presenilin-1 allele. Genesis 26, 5–8.
Yu H., Saura C. A., Choi S. Y., et al. (2001) APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 31, 713–726.
Zeitlin S., Liu J. P., Chapman D. L., Papaioannou V. E., and Efstratiadis A. (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 11, 155–163.
Zeng H., Chattarji S., Barbarosie M., et al. (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617–629.
Zhang Z., Hartmann H., Do V. M., et al. (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702.
Zheng H., Jiang M., Trumbauer M. E., et al. (1995) beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531.
Zimmer A. (1996) Gene targeting and behaviour: a genetic problem requires a genetic solution. Trends Neurosci. 19, 470.
Zuccato C., Ciammola A., Rigamonti D., et al. (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293, 493–498.