Gene panel sequencing in Brazilian patients with retinitis pigmentosa

International Journal of Retina and Vitreous - Tập 3 - Trang 1-11 - 2017
Kárita Antunes Costa1, Mariana Vallim Salles1, Chris Whitebirch2, John Chiang2, Juliana Maria Ferraz Sallum1
1Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
2Casey Eye Institute Molecular Diagnostic Laboratory, Oregon Health and Science University (OHSU), Portland, USA

Tóm tắt

Retinal dystrophies constitute a group of diseases characterized by clinical variability and pronounced genetic heterogeneity. Retinitis pigmentosa is the most common subtype of hereditary retinal dystrophy and is characterized by a progressive loss of peripheral field vision (Tunnel Vision), eventual loss of central vision, and progressive night blindness. The characteristics of the fundus changes include bone-spicule formations, attenuated blood vessels, reduced and/or abnormal electroretinograms, changes in structure imaged by optical coherence tomography, and subjective changes in visual function. The different syndromic and nonsyndromic forms of retinal dystrophies can be attributed to mutations in more than 250 genes. Molecular diagnosis for patients with retinitis pigmentosa has been hampered by extreme genetic and clinical heterogeneity between retinitis pigmentosa and other forms of retinal dystrophies. Next generation sequencing (NGS) technologies are among the most promising techniques to identify pathogenic variations in retinal dystrophies. The purpose of this study was to discover the molecular diagnosis for Brazilian patients clinically diagnosed with a retinitis pigmentosa pattern of inheritance by using NGS technologies. Sixteen patients with the clinical diagnosis of retinitis pigmentosa were included in the study. Their DNA was sequenced in a panel with 132 genes related to retinal dystrophies using the Illumina® platform. Sequence analysis and variation calling was performed using Soft Genetics®, NextGene, and Geneticist Assistant software. The criteria for pathogenicity analysis were established according to the results of prediction programs (Polyphen 2, Mutation taster and MetaCore™) and comparison of pathogenic variations found with databases. The identified potentially pathogenic variations were all confirmed by Sanger sequencing. There were 89 variations predicted as pathogenic, but only 10 of them supported the conclusion of the molecular diagnosis. Five of the nine patients were autosomal dominant RP (56%), two (22%) were autosomal recessive RP, and two (22%) were X-linked RP. Nine of the 16 patients (56%) had probably positive or positive results. The Next Generation Sequencing used in this study allowed the molecular diagnosis to be confirmed in 56% of the patients and clarified the inheritance pattern of the patient’s retinal dystrophies.

Tài liệu tham khảo

Weisschuh N, Mayer AK, Strom TM, Kohl S, Glöckle N, Schubach M, Andreasson S, Bernd A, Birch DG, Hamel CP, Heckenlively JR, Jacobson SG, Kamme C, Kellner U, Kunstmann E, Maffei P, Reiff CM, Rohrschneider K, Rosenberg T, Rudolph G, Vámos R, Varsányi B, Weleber RG, Wissinger B. Mutation detection in patients with retinal dystrophies using targeted next generation sequencing. PLoS ONE. 2016;11(1):e0145951. doi:10.1371/journal.pone.0145951. den Hollander AI, Black A, Bennett J, Cremers FP. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest. 2010;120(9):3042–53. doi:10.1172/JCI42258. Marmor MF, Aguirre G, Arden GB, et al. Retinitis pigmentosa. A symposium on terminology and methods of examination. Ophthalmology. 1983;90(2):126–31. Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet. 2013;84(2):132–41. doi:10.1111/cge.12203. Yang L, Cui H, Yin X, Dou H, Zhao L, Chen N, Zhang J, Zhang H, Li G, Ma Z. Dependable and efficient clinical molecular diagnosis of Chinese RP patient with targeted exon sequencing. PLoS ONE. 2015;10(10):e0140684. doi:10.1371/journal.pone.0140684. Fernandez-San Jose P, Corton M, Blanco-Kelly F, Avila-Fernandez A, Lopez-Martinez MA, Sanchez-Navarro I, Sanchez-Alcudia R, Perez-Carro R, Zurita O, Sanchez-Bolivar N, Lopez-Molina MI, Garcia-Sandoval B, Riveiro-Alvarez R, Ayuso C. Targeted Next-Generation Sequencing Improves the Diagnosis of Autosomal Dominant Retinitis Pigmentosa in Spanish Patients. Invest Ophthalmol Vis Sci. 2015;56(4):2173–82. doi:10.1167/iovs.14-16178. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;11(1):40. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795–809. Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007;125(2):151–8. Haim M. Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol Scand Suppl. 2002;233:1–34. Fahim AT, Daiger SP, Weleber RG. Retinitis pigmentosa overview. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. SourceGeneReviews® [Internet]. Seattle: University of Washington; 2000. p. 1993–2016. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science. 1994;264(5165):1604–8. Dryja TP, Hahn LB, Kajiwara K, Berson EL. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1997;38(10):1972–82. Unonius N, Farah ME, Sallum JMF. Diagnostic classification of retinal degenerative diseases São Paulo and Vale Retina groups. Arq Bras Oftalmol. 2003;66(4):443–8. RetNet. The Retinal Information Network 2016. Retrieved from https://sph.uth.edu/retnet/. Accessed Apr 2016. Genetic Home Reference. Retrieved from https://ghr.nlm.nih.gov/condition/retinitis-pigmentosa#statistics. Accessed Apr 2016. Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne SJ, Sullivan LS, Luo H, Zhao L, Wang X, Zaneveld JE, Salvo JS, Siddiqui S, Mao L, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Wen C, Flagg K, Ferreyra H, Pei J, Khan A, Ren H, Wang K, Lopez I, Qamar R, Zenteno JC, Ayala-Ramirez R, Buentello-Volante B, Fu Q, Simpson DA, Li Y, Sui R, Silvestri G, Daiger SP, Koenekoop RK, Zhang K, Chen R. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype–phenotype correlation and clinical refinements. Hum Genet. 2014;133(3):331–45. doi:10.1007/s00439-013-1381-5. Estrada-Cuzcano A, Koenekoop RK, Senechal A, De Baere EB, de Ravel T, Banfi S, Kohl S, Ayuso C, Sharon D, Hoyng CB, Hamel CP, Leroy BP, Ziviello C, Lopez I, Bazinet A, Wissinger B, Sliesoraityte I, Avila-Fernandez A, Littink KW, Vingolo EM, Signorini S, Banin E, Mizrahi-Meissonnier L, Zrenner E, Kellner U, Collin RW, den Hollander AI, Cremers FP, Klevering BJ. BBS1 mutations in a wide spectrum of phenotypes ranging from nonsyndromic retinitis pigmentosa to Bardet–Biedl syndrome. Arch Ophthalmol. 2012;130(11):1425–32. doi:10.1001/archophthalmol.2012.2434. Chiang JP, Trzupek K. The current status of molecular diagnosis of inherited retinal dystrophies. Curr Opin Ophthalmol. 2015;26(5):346–51. doi:10.1097/ICU.0000000000000185. González-del Pozo M, Borrego S, Barragán I, Pieras JI, Santoyo J, Matamala N, Naranjo B, Dopazo J, Antiñolo G. Mutation screening of multiple genes in Spanish patients with autosomal recessive retinitis pigmentosa by targeted resequencing. PLoS One. 2011;6(12):e27894. doi:10.1371/journal.pone.0027894. OMIM. Online Mendelian Inheritance in Man. Retrieved from http://www.omim.org/. Accessed Apr 2016. HGMD. Human Gene Mutation Database (Biobase Biological Databases) 2016. Retrieved from http://www.biobase-international.com/. Accessed Apr 2016. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi:10.1038/gim.2015.30. Sharon D, Bruns GA, McGee TL, Sandberg MA, Berson EL, Dryja TP. X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Invest Ophthalmol Vis Sci. 2000;41(9):2712–21. Koenekoop RK, Loyer M, Hand CK, Al Mahdi H, Dembinska O, Beneish R, Racine J, Rouleau GA. Novel RPGR mutations with distinct retinitis pigmentosa phenotypes in French–Canadian families. Am J Ophthalmol. 2003;136(4):678–87. Keen TJ, Inglehearn CF, Lester DH, Bashir R, Jay M, Bird AC, Jay B, Bhattacharya SS. Autosomal dominant retinitis pigmentosa: four new mutations in rhodopsin, one of them in the retinal attachment site. Genomics. 1991;11(1):199–205. Coppieters F, Leroy BP, Beysen D, Hellemans J, De Bosscher K, Haegeman G, Robberecht K, Wuyts W, Coucke PJ, De Baere E. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet. 2007;81(1):147–57. Hulleman JD, Nguyen A, Ramprasad VL, Murugan S, Gupta R, Mahindrakar A, Angara R, Sankurathri C, Mootha VV. A novel H395R mutation in MKKS/BBS6 causes retinitis pigmentosa and polydactyly without other findings of Bardet–Biedl or McKusick–Kaufman syndrome. Mol Vis. 2016;22:73–81. Dryja TP, McEvoy JA, McGee TL, Berson EL. Novel rhodopsin mutations Gly114Val and Gln184Pro in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000;41(10):3124–7. Daiger SP, Sullivan LS, Gire AI, Birch DG, Heckenlively JR, Bowne SJ. Mutations in known genes account for 58% of autosomal dominant retinitis pigmentosa (adRP). Adv Exp Med Biol. 2008;613:203–9. doi:10.1007/978-0-387-74904-4_23. Goldenberg-Cohen N, Banin E, Zalzstein Y, Cohen B, Rotenstreich Y, Rizel L, Basel-Vanagaite L, Ben-Yosef T. Genetic heterogeneity and consanguinity lead to a “double hit”: homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa. Mol Vis. 2013;19:1565–71. Huynh N, Jeffrey BG, Turriff A, et al. Sorting out co-occurrence of rare monogenic retinopathies: stargardt disease co-existing with congenital stationary night blindness. Ophthalmic Genet. 2014;35:51–6. Sheffield VC, Stone EM. Genomics and the eye. N Engl J Med. 2011;364:1932–42. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6. doi:10.1038/nature08250. Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM, Sodergren EJ, Birch DG, Wheaton DH, Heckenlively JR, Liu Q, Pierce EA, Weinstock GM, Daiger SP. Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci. 2011;52(1):494–503. doi:10.1167/iovs.10-6180. Consugar MB, Navarro-Gomez D, Place EM, Bujakowska KM, Sousa ME, Fonseca-Kelly ZD, Taub DG, Janessian M, Wang DY, Au ED, Sims KB, Sweetser DA, Fulton AB, Liu Q, Wiggs JL, Gai X, Pierce EA. Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med. 2015;17(4):253–61. doi:10.1038/gim.2014.172. Tucker BA, Scheetz TE, Mullins RF, DeLuca AP, Hoffmann JM, Johnston RM, Jacobson SG, Sheffield VC, Stone EM. Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci USA. 2011;108(34):E569–76. doi:10.1073/pnas.1108918108. Züchner S, Dallman J, Wen R, Beecham G, Naj A, Farooq A, Kohli MA, Whitehead PL, Hulme W, Konidari I, Edwards YJ, Cai G, Peter I, Seo D, Buxbaum JD, Haines JL, Blanton S, Young J, Alfonso E, Vance JM, Lam BL, Peričak-Vance MA. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am J Hum Genet. 2011;88(2):201–6. doi:10.1016/j.ajhg.2011.01.001. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40. doi:10.1093/hmg/ddq416. Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet. 2013;14(4):295–300. doi:10.1038/nrg3463. Shanks ME, Downes SM, Copley RR, Lise S, Broxholme J, Hudspith KA, Kwasniewska A, Davies WI, Hankins MW, Packham ER, Clouston P, Seller A, Wilkie AO, Taylor JC, Ragoussis J, Németh AH. Next-generation sequencing (NGS) as a diagnostic tool for retinal degeneration reveals a much higher detection rate in early-onset disease. Eur J Hum Genet. 2013;21(3):274–80. doi:10.1038/ejhg.2012.172. Audo I, Bujakowska KM, Léveillard T, Mohand-Saïd S, Lancelot ME, Germain A, Antonio A, Michiels C, Saraiva JP, Letexier M, Sahel JA, Bhattacharya SS, Zeitz C. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet J Rare Dis. 2012;25(7):8. doi:10.1186/1750-1172-7-8. Neveling K, Collin RW, Gilissen C, van Huet RA, Visser L, Kwint MP, Gijsen SJ, Zonneveld MN, Wieskamp N, de Ligt J, Siemiatkowska AM, Hoefsloot LH, Buckley MF, Kellner U, Branham KE, den Hollander AI, Hoischen A, Hoyng C, Klevering BJ, van den Born LI, Veltman JA, Cremers FP, Scheffer H. Next-generation genetic testing for retinitis pigmentosa. Hum Mutat. 2012;33(6):963–72. doi:10.1002/humu.22045. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat. 2011;32(5):557–63. doi:10.1002/humu.21438. Khan MI, Kersten FF, Azam M, Collin RW, Hussain A, Shah ST, Keunen JE, Kremer H, Cremers FP, Qamar R, den Hollander AI. CLRN1 mutations cause nonsyndromic retinitis pigmentosa. Ophthalmology. 2011;118(7):1444–8. doi:10.1016/j.ophtha.2010.10.047. Glöckle N, Kohl S, Mohr J, Scheurenbrand T, Sprecher A, Weisschuh N, Bernd A, Rudolph G, Schubach M, Poloschek C, Zrenner E, Biskup S, Berger W, Wissinger B, Neidhardt J. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet. 2014;22(1):99–104. doi:10.1038/ejhg.2013.72. Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. Exposing synonymous mutations. Trends Genet. 2014;30(7):308–21. doi:10.1016/j.tig.2014.04.006. Wang H, Wang X, Zou X, Xu S, Li H, Soens ZT, Wang K, Li Y, Dong F, Chen R, Sui R. Comprehensive molecular diagnosis of a large Chinese leber congenital amaurosis cohort. Invest Ophthalmol Vis Sci. 2015;56(6):3642–55. doi:10.1167/iovs.14-15972. Wang J, Zhang VW, Feng Y, Tian X, Li FY, Truong C, Wang G, Chiang PW, Lewis RA, Wong LJ. Dependable and efficient clinical utility of target capture-based deep sequencing in molecular diagnosis of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;55(10):6213–23. doi:10.1167/iovs.14-14936. Clark GR, Crowe P, Muszynska D, O’Prey D, O’Neill J, Alexander S, Willoughby CE, McKay GJ, Silvestri G, Simpson DA. Development of a diagnostic genetic test for simplex and autosomal recessive retinitis pigmentosa. Ophthalmology. 2010;117(11):2169–77. doi:10.1016/j.ophtha.2010.02.029. Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, Tsubota K, Webster AR, Moore AT, Allikmets R, Michaelides M. ABCA4 gene screening by next-generation sequencing in a British cohort. Invest Ophthalmol Vis Sci. 2013;54(10):6662–74. doi:10.1167/iovs.13-12570.