Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel ‘middle-type’ Kenyon cells

Zoological Letters - Tập 2 - Trang 1-13 - 2016
Kumi Kaneko1, Shota Suenami1, Takeo Kubo1
1Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Tóm tắt

In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel ‘middle-type’ Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.

Tài liệu tham khảo

Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47. Mobbs PG. The brain of the honeybee Apis mellifera. I. The connections and special organization of the mushroom bodies. Phil Trans R Soc Lond B. 1982;298:309–54. Strausfeld NJ. Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. J Comp Neurol. 2002;450:4–33. Fahrbach SE. Structure of the mushroom bodies of the insect brain. Ann Rev Entomol. 2006;51:209–32. Winston ML. The biology of the honeybee. Cambridge: Harvard University Press; 1987. Seeley TD. The wisdom of the hive. Cambridge: Harvard University Press; 1995. von Frisch K. The dance language and orientation of bees. Cambridge: Harvard University Press; 1967. Withers GS, Fahrbach SE, Robinson GE. Effect of experience on the organization of the mushroom bodies of honey bees. J Neurobiol. 1995;26:130–44. Farris SM, Robinson GE, Fahrbach SE. Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodied of the adult worker honeybee. J Neurosci. 2001;21:6395–404. Farris SM, Schulmeister S. Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci. 2011;278:940–51. Gronenberg W. Subdivisions of Hymenoptran mushroom body calyces by their afferent supply. J Comp Neurol. 2001;436:474–89. Ehmer B, Gronenberg W. Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Physiol. 2002;451:362-73. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K. Evolution, discovery, and interpretation of arthropod mushroom bodies. Lean Mem. 2002;5:11–37. Zars T, Fischer M, Schulz R, Heisenberg M. Localization of a short-term memory in Drosophila. Science. 2000;288:672–5. Pascual A, Préat T. Localization of long-term memory within the Drosophila mushroom body. Science. 2001;294:1115–7. Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci. 2003;4:266–75. Erber J, Masuhr T, Menzel R. Localization of short-term memory in the brain of the bee, Apis mellifera L. Physiol Entomol. 1980;5:343–58. Rybak J, Menzel R. Integrative properties of the Pe1 neuron, a unique mushroom body output neuron. Learn Mem. 1998;5:133–45. Locatelli F, Bundrock G, Müller U. Focal and temporal release of glutamate in the mushroom bodies improves olfactory memory in Apis mellifera. J Neurosci. 2005;25:11614–8. Kubo T. Neuroanatomical dissection of the honey bee brain based on temporal and regional gene expression patterns. In: Galizia CG, Eisenhardt D, Giulfa M. editors. Honeybee Neurobiology and Behavior. A Tribute to Randolf Menzel. New York: Springer; 2012. p. 341–58. Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature. 2006;443:931–49. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, et al. Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics. 2014;15:86. Kaneko K, Ikeda T, Nagai M, Hori S, Umatani C, Tadano H, et al. Novel middle-type kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis. PLoS One. 2013;8:e71732. Kamikouchi A, Takeuchi H, Sawata M, Ohashi K, Natori S, Kubo T. Preferential expression of the gene for a putative inositol 1,4,5-trisphosphate receptor homologue in the mushroom bodies of the brain of the worker honeybee Apis mellifera L. Biochem Biophys Res Commun. 1998;242:181–6. Takeuchi H, Kage E, Sawata M, Kamikouchi A, Ohashi K, Ohara M, et al. Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honey bee brain. Insect Mol Biol. 2001;10:487–94. Sawata M, Yoshino D, Takeuchi H, Kamikouchi A, Ohashi K, Kubo T. Identification of a novel gene, Ks-1, which encodes a non-coding nuclear RNA expressed in a restricted region of the honeybee brain. RNA. 2002;8:772–85. Tadano H, Yamazaki Y, Takeuchi H, Kubo T. Differential expression associated with age-dependent division of labdor and neural subtype-specific expression of a novel non-coding RNA, Nb-1, in the honeybee (Apis mellifera L.) worker brain. Insect Mol Biol. 2009;18:715–26. Takeuchi H, Fujiyuki T, Shirai K, Matsuo Y, Kamikouchi A, Fujinawa Y, et al. Identification of genes expressed preferentially in the honeybee mushroom bodies by combination of differential display and cDNA microarray. FEBS Lett. 2002;513:230–4. Suenami S, Paul RK, Takeuchi H, Okude G, Fujiyuki T, Shirai K, et al. Analysis of the differentiation of Kenyon cell subtypes using three mushroom body-preferential genes during metamorphosis in the honeybee (Apis mellifera L.). PLoS ONE, 2016;in press. Paul RK, Takeuchi H, Kubo T. Expression of two ecdysteroid-regulated genes, Broad-Complex and E75, in the brain and ovary of the honeybee (Apis mellifera L.). Zool Sci. 2006;23:1085–92. Kaneko K, Hori S, Morimoto MM, Nakaoka T, Paul RK, Fujiyuki T, et al. In situ hybridization analysis of the expression of futsch, tau, and MESK2 homologues in the brain of the European honeybee (Apis mellifera L.). PLoS One. 2010;5:e9213. Uno Y, Fujiyuki T, Morioka M, Kubo T. Mushroom body-preferential expression of proteins/genes involved in endoplasmic reticulum Ca2+-transport in the worker honeybee (Apis mellifera L.) brain. Insect Mol Biol. 2012;22:52–61. Uno Y, Fujiyuki T, Morioka M, Takeuchi H, Kubo T. Identification of proteins whose expression up- or down-regulated in the mushroom bodies in the honeybee brain using proteomics. FEBS Lett. 2007;581:97–101. Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Kubo T, Nakajima T. Identification of a tachykinin-related neuropeptide from the honeybee brain using direct MALDI-TOF MS and its gene expression in worker, queen, and drone heads. Insect Mol Biol. 2003;12:291–8. Kamikouchi A, Takeuchi H, Sawata M, Natori S, Kubo T. Concentrated expression of Ca2+/calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera L. J Comp Neurol. 2000;417:501–10. Sen Sarma M, Rodriguez-Zas SL, Hong F, Zhong S, Robinson GE. Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior. PLoS One. 2009;4:e6408. Paul RK, Takeuchi H, Matsuo Y, Kubo T. Gene expression of ecdyseriod-regulated gene, E74 of the honeybee in ovary and brain. Insect Mol Biol. 2005;14:9–15. Yamazaki Y, Shirai K, Paul RK, Fujiyuki T, Wakamoto A, Takeuchi H, et al. Differential expression of HR38 in the mushroom bodies of the honeybee brain depends on the caste and division of labor. FEBS Lett. 2006;580:2667–70. Takeuchi H, Paul RK, Matsuzaka E, Kubo T. EcR-A expression in the brain and ovary of the honeybee (Apis mellifera L.). Zool Sci. 2007;24:596–603. Kucharski R, Maleszka R. A royal jelly protein is expressed in a subset of Kenyon cells in the mushroom bodies of the honey bee brain. Naturwissenschaften. 1998;85:343–6. Eisenhardt D, Fiala A, Braun P, Rosenboom H, Erber PR, Menzel R. Cloning of a chatalytic subunit of cAMA-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain. Insect Mol Biol. 2001;10:173–83. Humphries MA, Mustard JA, Hunter SJ, Mercer A, Ward V, Ebert PR. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J Neurobiol. 2003;55:315–30. McQuillan HJ, Nakagawa S, Mercer AR. Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes. Learn Mem. 2012;19:151–8. Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Sawata M, Matsuo Y, Kato A, et al. Prepro-tachykinin gene expression in the honeybee Apis mellifera L. brain. Cell Tiss1ue Res. 2004;316:281–93. Ben-Shahar Y, Robinchon A, Sokolowski MB, Robinson GE. Influence of gene action across different time scales on behavior. Science. 2002;96:741–4. Tsuchimoto M, Yasuo S, Funada M, Aoki M, Sasagawa H, Yoshimura T, et al. Conservation of novel Mahya genes shows the existence of neural functions common between Hymenoptera and Deuterostome. Dev Genes Evol. 2005;215:564–74. Kucharski R, Maleszka R. Molecular profiling of behavioural development: differential expression of mRNAs for inoshitol 1,4,5-trisphosphate 3-kinase isoforms in naive and experienced honeybees (Apis mellifera). Mol Brain Res. 2002;99:92–101. Kiya T, Kubo T. Analysis of GABAergic and non-GABAergic neuron activity in the optic lobes of the forager and re-orienting worker honeybee (Apis mellifera L.). PLoS One. 2010;5:e8833. Thanya SH, Crozatierb M, Raymond-Delpecha V, Gauthiera M, Lenaersc G. Apisα2, Apisα7-1 and Apisα7-2: three new neuronal nicotinic acetylcholine receptor α-subunits in the honeybee brain. Gene. 2005;344:125–32. Srinivasan MV, Xhang S, Altwein M, Tautz J. Honeybee navigation: nature and calibration of the “odometer”. Science. 2000;287:851–3. Esch HE, Zhang S, Srinivasan MV, Tautz J. Honeybee dances communicate distances measured by optic flow. Nature. 2001;411:581–3. Ribi WA. The first optic ganglion of the bee. II. Topographical relationships of the monopolar cells within and between cartridges. Cell Tissue Res. 1976;171:359–73. Ribi WA, Scheel M. The second and third optic ganglia of the worker bee: Golgi studies of the neuronal elements in the medulla and lobula. Cell Tissue Res. 1981;221:17–43. Souza JM, Hertel H, Ventura DF, Menzel R. Response properties of stained monopolar cells in the honeybee lamina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 1992;170:267–74. Yang EC, Lin HC, Hung YS. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol. 2004;50:913–25. Berridge M, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat Rev Cell Biol. 2000;1:11–21. Berridge MJ. Calcium signal transduction and cellular control mechanisms. Biochim Biophys Acta. 2004;1742:3–7. Clapham DE. Calcium signaling. Cell. 2007;131:1047–58. Micheau J, Riedel G. Protein kinases: which one is the memory molecule? Cell Mol Life Sci. 1999;55:534–48. Smedt FD, Boom A, Pesesse X, Schiffmann SN, Erneuz C. Post-translational modification of human brain type 1 inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J Biol Chem. 1996;271:10419–24. Schell MJ, Erneux C, Irvine RF. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem. 2001;276:37537–46. Baker KD, Shewchuk LM, Kozlova T, Makishima M, Hassell A, Wisely B, et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell. 2003;113:731–42. Zhu J, Miura K, Chen L, Raikhel AS. AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. EMBO J. 2000;19:253–62. Velarde RA, Robinson GE, Fahrbach SE. Nuclear receptors of the honeybee: annotation and expression in the adult brain. Insect Mol Biol. 2006;15:585–95. Lee CY, Wendel DP, Reid P, Lam G, Thummel CS, Baehrecke EH. E93 directs steroid-triggered programmed cell death in Drosophila. Mol Cell. 2000;6:433–43. Kage E, Hayashi Y, Takeuchi H, Hirotsu T, Kunitomo H, Inoue T, et al. MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans. Curr Biol. 2005;15:1554–9. Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, et al. A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nature Neurosci. 2009;12:981–7. Yamazaki Y, Kiuchi M, Takeuchi H, Kubo T. Ecdysteroid biosynthesis in workers of the European honeybee (Apis mellifera L.). Insect Biochem Mol Biol. 2011;41:283–93. Baulieu EE. Steroid hormones in the brain: several mechanisms? In: Fuxe K, Gustafsson JA, Wetterberg L, editors. Steroid Hormone Regulation of the Brain. Pergamon Press: Oxford; 1981. p. 3–14. Ishimoto H, Sakai T, Kitamoto T. Ecdysteroid signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. Proc Natl Acd Sci USA. 2009;106:6381–6. Ishimoto K, Kitamoto T. The steroid molting hormone Ecdysone regulates sleep in adult Drosophila melanogaster. Genetics. 2009;106:6381–6. Kumar S, Chen D, Jang C, Nall A, Zheng X, Sehgal A. An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila. Nat Commun. 2014;5:5697. Uryu O, Ameku T, Niwa R. Recent progress in understanding the role of ecdysteriods in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. Zool Lett. 2015;1:32. Geddes LH, McQuillan HJ, Aiken A, Vergoz V, Mercer AR. Steroid hormone (20-hydroxyecdysone) modulates the acquisition of aversive olfactory memories in pollen forager honeybees. Learn Mem. 2013;20:399–409. Hori S, Kaneko K, Saito T, Takeuchi H, Kubo T. Expression of two microRNAs, ame-mir-276 and −1000, in the adult honeybee (Apis mellifera L.) brain. Apidologie. 2010;42:89–102. Kiya T, Kunieda T, Kubo T. Increased neural activity of a mushroom body neuron subtype in the brains of forager honeybees. PLoS One. 2007;2:e371. Kiya T, Kunieda T, Kubo T. Inducible- and constitutive-type transcript variants of kakusei, a novel non-coding immediate early gene, in the honeybee brain. Insect Mol Biol. 2008;17:531–6. Ugajin A, Kiya T, Kunieda T, Ono M, Yoshida T, Kubo T. Detection of neural activity in the brains of Japanese honeybee workers during the formation of a “hot defensive bee ball”. PLoS One. 2012;7(3):e32902. Alaux C, Robinson GE. Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J Chem Ecol. 2007;33:1346–50. McNeill MS, Robinson GE. Voxel-based analysis of the immediate early gene, c-Jun, in the honey bee brain after a sucrose stimulus. Insect Mol Biol. 2015;24:377–90. Fujita N, Nagata Y, Nishiuchi T, Sato M, Iwami M, Kiya T. Visualization of neural activity in insect brains using a conserved immediate early gene, Hr38. Curr Biol. 2013;23:2063–70. Lutz CC, Robinson GE. Activity-dependent gene expression in honey bee mushroom bodies in response to orientation flight. J Exp Biol. 2013;216:2031–8. Ugajin A, Kunieda T, Kubo T. Identification and characterization of an Egr ortholog as a neural immediate early gene in the European honeybee (Apis mellifera L.). FEBS Lett. 2013;587:3224–30. Ganeshina O, Schåfer S, Malun D, Menzel R. Proliferation and programmed cell death of neuronal precursors in the mushroom bodies of the honeybee. J Comp Neurol. 2000;417:349–65. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science. 2001;294:1307–13. Shenoy SK, Modia AS, Shuklac AK, Xiaoa K, Berthouzea M, Ahna S, et al. β-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc Natl Acad Sci U S A. 2009;106:6650–5. Nabhan JF, Pan H, Lu Q. Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the β2-adrenergic receptor. EMBO Rep. 2001;11:605–11. Han S-O, Kommaddi RP, Shenoy SK. Distinct roles for β-arrestin2 and arrestin-domain containing proteins in β2 adrenergic receptor trafficking. EMBO Rep. 2013;14:164–71. Awata H, Watanabe T, Hamanaka Y, Mito T, Noji S, Mizunami M. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep. 2015;5:15885. Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4:220–8. Kohno H, Suenami S, Takeuchi H, Sasaki T, Kubo T. Production of knockout mutants by CRISPR/Cas9 in the European honeybee, Apis mellifera L. Zool Sci. 2016, in press. Blenau W, Erber J, Baumann A. Characterization of a dopamine D1 receptor from Apis mellifera. cloning, functional expression, pharmacology, and mRNA localization in the brain. J Neurochem. 1998;70:15–23. Blenau W, Balfanz S, Baumann A. Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem. 2000;74:900–8. Kucharski K, Ball EE, Hayward DC, Maleszka R. Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene. 2000;242:399–405. Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A. Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem. 2003;86:725–35. Schlenstedt J, Balfanz S, Baumann A, Blenau W. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J Neurochem. 2006;98:1985–8. Beggs KT, Hamilton IS, Kurshan PT, Mustard JA, Mercer AR. Characterization of a D2-like dopamine receptor (AmDOP3) in honeybee, Apis mellifera L. Insect Biochem Mol Biol. 2005;35:873–82.