Gene expression in zebrafish embryos following exposure to Cu-doped TiO2 and pure TiO2 nanometer-sized photocatalysts

Min‐Kyeong Yeo1, Hyung-Geun Park1
1Department of Environmental Science and Environmental Research Center, College of Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sreethawong, T., Suzuki, Y. & Yoshikawa, S. Photocatalytic evolution of hydrogen over nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. Catal Commun 6:119–124 (2005).

Ho, W., Yu, J. C. & Yu, J. Photocatalytic TiO2/glass nanoflake array films. Langmuir 21:3486–3492 (2005).

Kim, S., Hwang, S. & Choi, W. Visible light active platinum-ion-doped TiO2 photocatalyst. J Phys Chem B 109:24260–24267 (2005).

Kemp, T. J. & McIntyre, R. A. Transition metal-doped titanium (IV) dioxide: characterisation and influence on photodegradation of poly (vinyl chloride). Polym Degrad Stabil 91:165–194 (2006).

Tseng, I. H., Wu, J. C. S. & Chou, H. Y. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440 (2004).

Li, Z., Shen, W., He, W. & Zu, X. Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue. J Hazard Mater 155:590–594 (2008).

Janes, R., Knightley, L. J. & Harding, C. J. Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing. Dyes Pigments 62:199–212 (2004).

Choi, H. J. & Kang, M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. Int J Hydrogen Energy 32:3841–3848 (2007).

Moore, M. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976 (2006).

Lovern, S. B. & Klaper, R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (L60) nanoparticles. Environ Toxicol Chem 25:1132–1137 (2006).

Daughton, C. G. Non-regulated water contaminants: emerging research. Environ Impact Asses Rev 24:711–732 (2004).

NanoRoad. Overview of Promising Nanomaterials for Industrial Applications. (URL: http://www.nanoroad. net/download/overviewnanomaterials.pdf ) (2005).

American Elements. Silver Nanoparticles. (URL: http: //www.americanelements.com/agnp.html ) (2007).

Nanoscale. NanoActive Titanium Dioxide. (URL: http: //www.nanoscalecorp.com/producvts and services/specialty chemicals/metal oxides/?page=tio2 ) (2007).

Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959 (2007).

Kaegi, R. et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239 (2008).

Mueller, N. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453 (2008).

Sharma, V. K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment — A Review. J Environ Sci Heal A 44:1485–1495 (2009).

Jha, A. N. Genotoxicological studies in aquatic organisms: an overview. Mut Res 552:1–17 (2004).

Huovinen, P. S., Penttila, H. & Soimasuo, M. R. Penetration of UV radiation into Finish lakes with different characteristics. Int J Circumpolar Health 59:15–21 (2000).

Tedetti, M. & Sempere, R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem Photobiol 82:389–397 (2006).

Hader, D. P. & Sinha, R. P. Solar ultraviolet radiationinduced DNA damage in aquatic organisms: potential environmental impact. Mutat Res 571:221–233 (2005).

Reeves, J. F., Davies, S. J., Dodd, N. J. F. & Jha, A. N. Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 640:113–122 (2008).

Raisuddin, S. & Jha, A. N. Relative sensitivity of fish and mammalian cells to sodium arsenate and arsenite as determined by alkaline single cell gel electrophoresis and cytokinesis block micronucleus assay. Environ Mol Mutagen 44:83–89 (2004).

Bols, N. C., Ganassin, R. C., Tom, D. J. & Lee, L. E. Growth of fish cell lines in glutamine-free media. Cytotechnology 16:159–166 (1994).

Moore, M. N., Allen, J. I. & McVeigh, K. Environmental prognostics: an integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Mar Environ Res 61:278–304 (2006).

Alderdice, D. F. Osmotic and ionic regulation in teleost eggs and larvae. Fish Physiol Biochem 11:163–251 (1988).

Rombough, P. J. Gas exchange, ionoregulation and the functional development of the teleost gill. Am Fish Soc Symp 40:47–83 (2004).

Varsamos, S., Nebel, C. & Charmantier, G. Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A 141:401–429 (2005).

Yeo, M. K. & Kang, M. S. Effects of CuxTiOy nanometer particles on biological toxicity during zebrafish embryogenesis. Korean J Chem Eng 26:711–718 (2009).

Fan, W. et al. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut 159:729–734 (2011).

Pan, T. C., Liao, B. K., Huang, C. J., Lin, L. Y. & Hwang, P. P. Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol 289:1202–1211 (2005).

Esaki, M. et al. Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol 292:470–480 (2007).

Lin, L. Y., Horng, J. L., Kunkel, J. G. & Hwang, P. P. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290:371–378 (2006).

Jonz, M. G. & Nurse, C. A. Epithelial mitochondriarich cells and associated innervation in adult and developing zebrafish. J Comp Neurol 497:817–832 (2006).

Adams, J. M. & Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66 (2001).

Vaux, D. L. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442 (1988).

Gross, A., McDonnell, J. M. & Korsmeyer, S. J. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911 (1999).

Kelekar, A. & Thompson, C. B. Bcl-2 homology domains: the role of the BH3 domain in apoptosis. Trends Cell Biol 8:324–329 (1998).

Wang, S. H., Lee, C. W., Chiou, A. & Wei, P. K. Sizedependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology 8:3 (2010).

Westerfield, M. The Zebrafish book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Eugene (2000).

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310 (1995).

Yeo, M. K. & Kang, M. S. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc 29:1179–1184 (2008).