Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data

Abbasali Emamjomeh1, Elham Saboori Robat2, Javad Zahiri3, Mahmood Solouki2, Pegah Khosravi4
1Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
2Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
3Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
4School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abbas OA (2008) Comparisons between data clustering algorithms. Int Arab J Inf Technol 5(3):320–325

Allen JD, Xie Y et al (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7(1):e29348. doi: 10.1371/journal.pone.0029348

Aoki Y, Okamura Y et al (2015) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57(1):pcv165

Asai T, Tena G et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. doi: 10.1038/415977a

Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. doi: 10.1038/75556

Assenov Y, Ramírez F et al (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284

Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1

Ballouz S, Verleyen W et al (2015) Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics 31(13):2123–2130

Bansal M, Belcastro V et al (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3(1):78

Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:418–429

Cai J, Chen G et al (2010) ClusterViz: a Cytoscape plugin for graph clustering and visualization. School of Information Science and Engineering, Central South University, Changsha, p 1

Carter SL, Brechbuhler CM et al (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250. doi: 10.1093/bioinformatics/bth234

Chae L, Lee I et al (2012) Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15(2):177–184. doi: 10.1016/j.pbi.2012.01.006

Chavez Montes RA, Coello G et al (2014) ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol 14:97. doi: 10.1186/1471-2229-14-97

Chen N, del Val IJ et al (2012) Metabolic network reconstruction: advances in in silico interpretation of analytical information. Curr Opin Biotechnol 23(1):77–82

Chen HY, Hsieh EJ et al (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New phytol 211(2):599–613. doi: 10.1111/nph.13914

Cheong R, Hoffmann A et al (2008) Understanding NF-κB signaling via mathematical modeling. Mol Syst Biol 4(1):192

Christensen C, Thakar J et al (2007) Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. Syst Biol IET 1(2):61–77

Clarke C, Doolan P et al (2012) CGCDB: a web-based resource for the investigation of gene coexpression in CHO cell culture. Biotechnol Bioeng 109(6):1368–1370

D’haeseleer P, Liang S et al (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726

De Bodt S, Hollunder J et al (2012) CORNET 2.0: integrating plant coexpression, protein–protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195(3):707–720

Deihimi T, Niazi A et al (2012) Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed genes and promoter architecture-case study: dual roles of thaumatin like proteins in biotic and abiotic stresses. SpringerPlus 1:30. doi: 10.1186/2193-1801-1-30

Dimitrakopoulos GN, Maraziotis IA et al (2014) A clustering based method accelerating gene regulatory network reconstruction. In: Procedia Computer Science, vol 29, pp 1993–2002. doi: 10.1016/j.procs.2014.05.183

Ditt RF, Kerr KF et al (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interactions MPMI 19(6):665–681. doi: 10.1094/MPMI-19-0665

Du D, Rawat N et al (2015) Construction of citrus gene coexpression networks from microarray data using random matrix theory. Hortic Res 2:15026

Emamjomeh A, Goliaei B et al (2015) Prediction of gene co-expression by quantifying heterogeneous features. Curr Bioinform 10(4):414–424

Faccioli P, Provero P et al (2005) From single genes to co-expression networks: extracting knowledge from barley functional genomics. Plant Mol Biol 58(5):739–750. doi: 10.1007/s11103-005-8159-7

Faith JJ, Hayete B et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8

Feltus FA, Ficklin SP et al (2013) Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Syst Biol 7(1):1

Fiorilli V, Catoni M et al (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184(4):975–987. doi: 10.1111/j.1469-8137.2009.03031.x

Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi: 10.1038/35888

Floratos A, Smith K et al (2010) geWorkbench: an open source platform for integrative genomics. Bioinformatics 26(14):1779–1780

Fridborg I, Williams A et al (2004) Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. Mol Plant Microbe Interactions MPMI 17(10):1086–1094. doi: 10.1094/MPMI.2004.17.10.1086

Frohlich H, Praveen P et al (2011) Fast and efficient dynamic nested effects models. Bioinformatics 27(2):238–244. doi: 10.1093/bioinformatics/btq631

Fukushima A, Nishizawa T et al (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol 158(4):1487–1502

Giorgi FM, Del Fabbro C et al (2013) Comparative study of RNA-seq-and microarray-derived coexpression networks in Arabidopsis thaliana. Bioinformatics 29(6):717–724

Hamada K, Hongo K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229

Hansen BO, Vaid N et al (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394. doi: 10.3389/fpls.2014.00394

He D, Liu Z-P et al (2012) Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J Mol Cell Biol 4(3):140–152

Hong S, Chen X et al (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res 41(8):e95–e96

Huang S, Ingber DE (2006) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54

Hwang W, Cho Y-R et al (2006) A novel functional module detection algorithm for protein–protein interaction networks. Algorithms Mol Biol 1(1):1

Iancu OD, Kawane S et al (2012) Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 28(12):1592–1597. doi: 10.1093/bioinformatics/bts245

Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, vol 159. GMD-Forschungszentrum Informationstechnik, p 48

Jupiter D, Chen H et al (2009) STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data. BMC Bioinform 10(1):332

Khosravi P, Gazestani V et al (2015) Comparative analysis of co-expression networks reveals molecular changes during the cancer progression. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 June 2015, Toronto, Springer, pp 1481–1487

Kim KC, Lai Z et al (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371. doi: 10.1105/tpc.107.055566

Knapp B, Kaderali L (2013) Reconstruction of cellular signal transduction networks using perturbation assays and linear programming. PLoS One 8(7):e69220. doi: 10.1371/journal.pone.0069220

Kommadath A, Bao H et al (2014) Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding. BMC Genom 15(1):452

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):559

Lee HK, Hsu AK et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094

Lee T-H, Kim Y-K et al (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151(1):16–33

Lehtinen S, Marsellach FX et al (2013) Stress induces remodelling of yeast interaction and co-expression networks. Mol BioSyst 9(7):1697–1707

Lemay DG, Martin WF et al (2012) G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes. BMC Bioinform 13(1):253

Lerman JA, Hyduke DR et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929

Li J, Wei H et al (2013) DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis. BioMed Res Int. doi: 10.1155/2013/856325

Liang Y-H, Cai B et al (2014) Construction and validation of a gene co-expression network in grapevine (Vitis vinifera. L.). Hortic Res 1:14040

Lim CJ, Yang KA et al (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119(4):373–383

Lin W-D, Liao Y-Y et al (2011) Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. doi: 10.1104/pp.110.166520

Linderman GC, Patel VN et al (2011) BiC: a web server for calculating bimodality of coexpression between gene and protein networks. Bioinformatics 27(8):1174–1175

Linderman GC, Chance MR et al (2012) MAGNET: MicroArray Gene expression and Network Evaluation Toolkit. Nucleic Acids Res 40(W1):W152–W156

Liu Z-P (2015) Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics 16(1):3–22

Liu B-H, Yu H et al (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26(20):2637–2638

López-Kleine L, Leal L et al (2013) Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Func Genom 12(5):457–467

Luscombe NM, Babu MM et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312. doi: 10.1038/nature02782

Lysenko A, Defoin-Platel M et al (2011) Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinform 12(1):203

Maere S, Heymans K et al (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

Maffei G, Miozzi L et al (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24(3):179–186. doi: 10.1007/s00572-013-0527-6

Mal C, Aftabudddin M et al (2014) No3CoGP: non-conserved and conserved coexpressed gene pairs. BMC Res Notes 7(1):886

Manfield IW, Jen C-H et al (2006) Arabidopsis co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34(suppl 2):W504–W509

Mao L, Van Hemert JL et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinform 10(1):346

Marbach D, Costello JC et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804

Margolin AA, Nemenman I et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7

Markowetz F, Spang R (2007) Inferring cellular networks—a review. BMC Bioinform 8(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5

Mentzen WI, Wurtele ES (2008) Regulon organization of Arabidopsis. BMC Plant Biol 8(1):99

Michalopoulos I, Pavlopoulos GA et al (2012) Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes. BMC Res Notes 5(1):265

Mochida K, Uehara-Yamaguchi Y et al (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52(5):785–803

Molendijk AJ, Ruperti B et al (2008) A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53(6):909–923. doi: 10.1111/j.1365-313X.2007.03384.x

Montojo J, Zuberi K et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153

Movahedi S, Van Bel M et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798

Mutwil M, Øbro J et al (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res 36(suppl 2):W320–W326

Mutwil M, Usadel B et al (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152(1):29–43. doi: 10.1104/pp.109.145318

Myers CL, Robson D et al (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6(13):R114. doi: 10.1186/gb-2005-6-13-r114

Nepusz T, Yu H et al (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472. doi: 10.1038/nmeth.1938

Netotea S, Sundell D et al (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genom 15(1):106

Obayashi T, Kinoshita K (2010) COXPRESdb: a database to compare gene coexpression in seven model animals. Nucleic Acids Res 39:D1016–D1022

Obayashi T, Kinoshita K et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35(suppl 1):D863–D869

Obayashi T, Hayashi S et al (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res 36(suppl 1):D77–D82

Obayashi T, Hayashi S et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37(suppl 1):D987–D991

Obayashi T, Nishida K et al (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol 52(2):213–219

Obayashi T, Okamura Y et al (2013) COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals. Nucleic Acids Res 41(D1):D1014–D1020

Obayashi T, Okamura Y et al (2014) ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55(1):e6–e7

Ogata Y, Suzuki H et al (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26(9):1267–1268

Oh IS, Park AR et al (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847. doi: 10.1105/tpc.105.034819

Okamura Y, Aoki Y et al (2014) COXPRESdb in 2015: coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems. Nucleic Acids Res 43:D82–D86

Pan Y, Pylatuik JD et al (2004) Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining. J Bioinform Comput Biol 2(04):639–655

Peng H, Long F et al (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238

Prifti E, Zucker J-D et al (2010) Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics 26(24):3083–3089

Proost S, Mutwil M (2016) Tools of the trade: studying molecular networks in plants. Curr Opin Plant Biol 30:143–150. doi: 10.1016/j.pbi.2016.02.010

Reshef DN, Reshef YA et al (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524

Reverter A, Chan EK (2008) Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21):2491–2497

Richard H, Schulz MH et al (2010) Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res 38(10):e112–e113

Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16(9):1139–1149. doi: 10.1101/gad.222702

Rotival M, Petretto E (2014) Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Func Genom 13(1):66–78

Roy S, Bhattacharyya DK et al (2014) Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform 15(Suppl 7):S10

Ruan J, Dean AK et al (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4:8. doi: 10.1186/1752-0509-4-8

Ryan PT, Ó’Maoiléidigh DS et al (2015) Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation. BMC Genom 16(1):488

Sait K (2009) The prediction of local modular structures in a co-expression network based on gene expression data sets. Genome Inform 23:117–127

Sarkar NK, Kim Y-K et al (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84(1–2):125–143

Serin EA, Nijveen H et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. doi: 10.3389/fpls.2016.00444

Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

Skinner J, Kotliarov Y et al (2011) Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinform 12(1):286

Smyth GK (2005) Limma: linear models for microarray data Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420

Song L, Langfelder P et al (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13:328. doi: 10.1186/1471-2105-13-328

Srinivasasainagendra V, Page GP et al (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147(3):1004–1016

Steinhauser D, Usadel B et al (2004) CSB. DB: a comprehensive systems-biology database. Bioinformatics 20(18):3647–3651

Steuer R, Kurths J et al (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl 2):S231–S240

Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi: 10.1126/science.1087447

Troyanskaya OG, Dolinski K et al (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100(14):8348–8353. doi: 10.1073/pnas.0832373100

Tsaparas P, Marino-Ramirez L et al (2006) Global similarity and local divergence in human and mouse gene co-expression networks. BMC Evol Biol 6:70. doi: 10.1186/1471-2148-6-70

Tzfadia O, Diels T et al (2015) CoExpNetViz: comparative co-expression networks construction and visualization tool. Front Plant Sci. doi: 10.3389/fpls.2015.01194

Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164

Usadel B, Obayashi T et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651. doi: 10.1111/j.1365-3040.2009.02040.x

van Dam S, Craig T et al (2015) GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res 43(D1):D1124–D1132

van Delft J, Gaj S et al (2012) RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo [a] pyrene. Toxicol Sci 130(2):427–439

van Noort V, Snel B et al (2004) The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 5(3):280–284. doi: 10.1038/sj.embor.7400090

Wang YR, Huang H (2014) Review on statistical methods for gene network reconstruction using expression data. J Theor Biol 362:53–61

Wang S, Yin Y et al (2012a) Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol 12(1):138

Wang Y, Joseph SJ et al (2012b) SNPxGE2: a database for human SNP–coexpression associations. Bioinformatics 28(3):403–410

Wang P, Qi H et al (2014) ImmuCo: a database of gene co-expression in immune cells. Nucleic Acids Res 43:D1133–D1139

Willmann R, Lajunen HM et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108(49):19824–19829. doi: 10.1073/pnas.1112862108

Wolf DM, Lenburg ME et al (2014) Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS One 9(2):e88309. doi: 10.1371/journal.pone.0088309

Wolfe CJ, Kohane IS et al (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinform 6:227. doi: 10.1186/1471-2105-6-227

Wong DC, Sweetman C et al (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genom 14(1):882

Wu C-C, Huang H-C et al (2004) GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18):3691–3693

Xiong J, Lu X et al (2011) Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci Chin Life Sci 54(1):65–67

Xiong J, Lu Y et al (2013) Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database 2013:bat008

Yalamanchili HK, Li Z et al (2014) SpliceNet: recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples. Nucleic Acids Res 42(15):e121

Yim WC, Yu Y et al (2013) PLANEX: the plant co-expression database. BMC Plant Biol 13(1):83

Zhang L, Yu S et al (2012) Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One 7(5):e33748

Zhang J, Liu W et al (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129–136

Zhao J-L, Pan J-S et al (2015) Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics 105(5):296–303

Zheng X, Xue C et al (2015) Identification of crucial genes in intracranial aneurysm based on weighted gene coexpression network analysis. Cancer Gene Ther 22(5):238–245

Zhou X, Kao M-CJ et al (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci 99(20):12783–12788

Zhu X, Gerstein M et al (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21(9):1010–1024. doi: 10.1101/gad.1528707