Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbas OA (2008) Comparisons between data clustering algorithms. Int Arab J Inf Technol 5(3):320–325
Allen JD, Xie Y et al (2012) Comparing statistical methods for constructing large scale gene networks. PLoS One 7(1):e29348. doi: 10.1371/journal.pone.0029348
Aoki Y, Okamura Y et al (2015) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57(1):pcv165
Asai T, Tena G et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875):977–983. doi: 10.1038/415977a
Ashburner M, Ball CA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29. doi: 10.1038/75556
Assenov Y, Ramírez F et al (2008) Computing topological parameters of biological networks. Bioinformatics 24(2):282–284
Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4(1):1
Ballouz S, Verleyen W et al (2015) Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics 31(13):2123–2130
Bansal M, Belcastro V et al (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3(1):78
Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 5:418–429
Cai J, Chen G et al (2010) ClusterViz: a Cytoscape plugin for graph clustering and visualization. School of Information Science and Engineering, Central South University, Changsha, p 1
Carter SL, Brechbuhler CM et al (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14):2242–2250. doi: 10.1093/bioinformatics/bth234
Chae L, Lee I et al (2012) Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15(2):177–184. doi: 10.1016/j.pbi.2012.01.006
Chavez Montes RA, Coello G et al (2014) ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol 14:97. doi: 10.1186/1471-2229-14-97
Chen N, del Val IJ et al (2012) Metabolic network reconstruction: advances in in silico interpretation of analytical information. Curr Opin Biotechnol 23(1):77–82
Chen HY, Hsieh EJ et al (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New phytol 211(2):599–613. doi: 10.1111/nph.13914
Cheong R, Hoffmann A et al (2008) Understanding NF-κB signaling via mathematical modeling. Mol Syst Biol 4(1):192
Christensen C, Thakar J et al (2007) Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. Syst Biol IET 1(2):61–77
Clarke C, Doolan P et al (2012) CGCDB: a web-based resource for the investigation of gene coexpression in CHO cell culture. Biotechnol Bioeng 109(6):1368–1370
D’haeseleer P, Liang S et al (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8):707–726
De Bodt S, Hollunder J et al (2012) CORNET 2.0: integrating plant coexpression, protein–protein interactions, regulatory interactions, gene associations and functional annotations. New Phytol 195(3):707–720
Deihimi T, Niazi A et al (2012) Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed genes and promoter architecture-case study: dual roles of thaumatin like proteins in biotic and abiotic stresses. SpringerPlus 1:30. doi: 10.1186/2193-1801-1-30
Dimitrakopoulos GN, Maraziotis IA et al (2014) A clustering based method accelerating gene regulatory network reconstruction. In: Procedia Computer Science, vol 29, pp 1993–2002. doi: 10.1016/j.procs.2014.05.183
Ditt RF, Kerr KF et al (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interactions MPMI 19(6):665–681. doi: 10.1094/MPMI-19-0665
Du D, Rawat N et al (2015) Construction of citrus gene coexpression networks from microarray data using random matrix theory. Hortic Res 2:15026
Emamjomeh A, Goliaei B et al (2015) Prediction of gene co-expression by quantifying heterogeneous features. Curr Bioinform 10(4):414–424
Faccioli P, Provero P et al (2005) From single genes to co-expression networks: extracting knowledge from barley functional genomics. Plant Mol Biol 58(5):739–750. doi: 10.1007/s11103-005-8159-7
Faith JJ, Hayete B et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5(1):e8
Feltus FA, Ficklin SP et al (2013) Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Syst Biol 7(1):1
Fiorilli V, Catoni M et al (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184(4):975–987. doi: 10.1111/j.1469-8137.2009.03031.x
Fire A, Xu S et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi: 10.1038/35888
Floratos A, Smith K et al (2010) geWorkbench: an open source platform for integrative genomics. Bioinformatics 26(14):1779–1780
Fridborg I, Williams A et al (2004) Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. Mol Plant Microbe Interactions MPMI 17(10):1086–1094. doi: 10.1094/MPMI.2004.17.10.1086
Frohlich H, Praveen P et al (2011) Fast and efficient dynamic nested effects models. Bioinformatics 27(2):238–244. doi: 10.1093/bioinformatics/btq631
Fukushima A, Nishizawa T et al (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol 158(4):1487–1502
Giorgi FM, Del Fabbro C et al (2013) Comparative study of RNA-seq-and microarray-derived coexpression networks in Arabidopsis thaliana. Bioinformatics 29(6):717–724
Hamada K, Hongo K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229
Hansen BO, Vaid N et al (2014) Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front Plant Sci 5:394. doi: 10.3389/fpls.2014.00394
He D, Liu Z-P et al (2012) Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J Mol Cell Biol 4(3):140–152
Hong S, Chen X et al (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res 41(8):e95–e96
Huang S, Ingber DE (2006) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54
Hwang W, Cho Y-R et al (2006) A novel functional module detection algorithm for protein–protein interaction networks. Algorithms Mol Biol 1(1):1
Iancu OD, Kawane S et al (2012) Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 28(12):1592–1597. doi: 10.1093/bioinformatics/bts245
Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, vol 159. GMD-Forschungszentrum Informationstechnik, p 48
Jupiter D, Chen H et al (2009) STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data. BMC Bioinform 10(1):332
Khosravi P, Gazestani V et al (2015) Comparative analysis of co-expression networks reveals molecular changes during the cancer progression. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 June 2015, Toronto, Springer, pp 1481–1487
Kim KC, Lai Z et al (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20(9):2357–2371. doi: 10.1105/tpc.107.055566
Knapp B, Kaderali L (2013) Reconstruction of cellular signal transduction networks using perturbation assays and linear programming. PLoS One 8(7):e69220. doi: 10.1371/journal.pone.0069220
Kommadath A, Bao H et al (2014) Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding. BMC Genom 15(1):452
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):559
Lee HK, Hsu AK et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094
Lee T-H, Kim Y-K et al (2009) RiceArrayNet: a database for correlating gene expression from transcriptome profiling, and its application to the analysis of coexpressed genes in rice. Plant Physiol 151(1):16–33
Lehtinen S, Marsellach FX et al (2013) Stress induces remodelling of yeast interaction and co-expression networks. Mol BioSyst 9(7):1697–1707
Lemay DG, Martin WF et al (2012) G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes. BMC Bioinform 13(1):253
Lerman JA, Hyduke DR et al (2012) In silico method for modelling metabolism and gene product expression at genome scale. Nat Commun 3:929
Li J, Wei H et al (2013) DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis. BioMed Res Int. doi: 10.1155/2013/856325
Liang Y-H, Cai B et al (2014) Construction and validation of a gene co-expression network in grapevine (Vitis vinifera. L.). Hortic Res 1:14040
Lim CJ, Yang KA et al (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells. J Plant Res 119(4):373–383
Lin W-D, Liao Y-Y et al (2011) Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. doi: 10.1104/pp.110.166520
Linderman GC, Patel VN et al (2011) BiC: a web server for calculating bimodality of coexpression between gene and protein networks. Bioinformatics 27(8):1174–1175
Linderman GC, Chance MR et al (2012) MAGNET: MicroArray Gene expression and Network Evaluation Toolkit. Nucleic Acids Res 40(W1):W152–W156
Liu Z-P (2015) Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics 16(1):3–22
Liu B-H, Yu H et al (2010) DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 26(20):2637–2638
López-Kleine L, Leal L et al (2013) Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Func Genom 12(5):457–467
Luscombe NM, Babu MM et al (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312. doi: 10.1038/nature02782
Lysenko A, Defoin-Platel M et al (2011) Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinform 12(1):203
Maere S, Heymans K et al (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449
Maffei G, Miozzi L et al (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24(3):179–186. doi: 10.1007/s00572-013-0527-6
Mal C, Aftabudddin M et al (2014) No3CoGP: non-conserved and conserved coexpressed gene pairs. BMC Res Notes 7(1):886
Manfield IW, Jen C-H et al (2006) Arabidopsis co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 34(suppl 2):W504–W509
Mao L, Van Hemert JL et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinform 10(1):346
Marbach D, Costello JC et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796–804
Margolin AA, Nemenman I et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7(Suppl 1):S7
Markowetz F, Spang R (2007) Inferring cellular networks—a review. BMC Bioinform 8(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5
Michalopoulos I, Pavlopoulos GA et al (2012) Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes. BMC Res Notes 5(1):265
Mochida K, Uehara-Yamaguchi Y et al (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52(5):785–803
Molendijk AJ, Ruperti B et al (2008) A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53(6):909–923. doi: 10.1111/j.1365-313X.2007.03384.x
Montojo J, Zuberi K et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Research 3:153
Movahedi S, Van Bel M et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798
Mutwil M, Øbro J et al (2008) GeneCAT—novel webtools that combine BLAST and co-expression analyses. Nucleic Acids Res 36(suppl 2):W320–W326
Mutwil M, Usadel B et al (2010) Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 152(1):29–43. doi: 10.1104/pp.109.145318
Myers CL, Robson D et al (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol 6(13):R114. doi: 10.1186/gb-2005-6-13-r114
Nepusz T, Yu H et al (2012) Detecting overlapping protein complexes in protein–protein interaction networks. Nat Methods 9(5):471–472. doi: 10.1038/nmeth.1938
Netotea S, Sundell D et al (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genom 15(1):106
Obayashi T, Kinoshita K (2010) COXPRESdb: a database to compare gene coexpression in seven model animals. Nucleic Acids Res 39:D1016–D1022
Obayashi T, Kinoshita K et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35(suppl 1):D863–D869
Obayashi T, Hayashi S et al (2008) COXPRESdb: a database of coexpressed gene networks in mammals. Nucleic Acids Res 36(suppl 1):D77–D82
Obayashi T, Hayashi S et al (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37(suppl 1):D987–D991
Obayashi T, Nishida K et al (2011) ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol 52(2):213–219
Obayashi T, Okamura Y et al (2013) COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals. Nucleic Acids Res 41(D1):D1014–D1020
Obayashi T, Okamura Y et al (2014) ATTED-II in 2014: evaluation of gene coexpression in agriculturally important plants. Plant Cell Physiol 55(1):e6–e7
Ogata Y, Suzuki H et al (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26(9):1267–1268
Oh IS, Park AR et al (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17(10):2832–2847. doi: 10.1105/tpc.105.034819
Okamura Y, Aoki Y et al (2014) COXPRESdb in 2015: coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems. Nucleic Acids Res 43:D82–D86
Pan Y, Pylatuik JD et al (2004) Discovery of functional genes for systemic acquired resistance in Arabidopsis thaliana through integrated data mining. J Bioinform Comput Biol 2(04):639–655
Peng H, Long F et al (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238
Prifti E, Zucker J-D et al (2010) Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics 26(24):3083–3089
Proost S, Mutwil M (2016) Tools of the trade: studying molecular networks in plants. Curr Opin Plant Biol 30:143–150. doi: 10.1016/j.pbi.2016.02.010
Reshef DN, Reshef YA et al (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524
Reverter A, Chan EK (2008) Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21):2491–2497
Richard H, Schulz MH et al (2010) Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res 38(10):e112–e113
Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16(9):1139–1149. doi: 10.1101/gad.222702
Rotival M, Petretto E (2014) Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Func Genom 13(1):66–78
Roy S, Bhattacharyya DK et al (2014) Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinform 15(Suppl 7):S10
Ruan J, Dean AK et al (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4:8. doi: 10.1186/1752-0509-4-8
Ryan PT, Ó’Maoiléidigh DS et al (2015) Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation. BMC Genom 16(1):488
Sait K (2009) The prediction of local modular structures in a co-expression network based on gene expression data sets. Genome Inform 23:117–127
Sarkar NK, Kim Y-K et al (2014) Coexpression network analysis associated with call of rice seedlings for encountering heat stress. Plant Mol Biol 84(1–2):125–143
Serin EA, Nijveen H et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. doi: 10.3389/fpls.2016.00444
Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504
Skinner J, Kotliarov Y et al (2011) Construct and compare gene coexpression networks with DAPfinder and DAPview. BMC Bioinform 12(1):286
Smyth GK (2005) Limma: linear models for microarray data Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420
Song L, Langfelder P et al (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13:328. doi: 10.1186/1471-2105-13-328
Srinivasasainagendra V, Page GP et al (2008) CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiol 147(3):1004–1016
Steinhauser D, Usadel B et al (2004) CSB. DB: a comprehensive systems-biology database. Bioinformatics 20(18):3647–3651
Steuer R, Kurths J et al (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(suppl 2):S231–S240
Stuart JM, Segal E et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. doi: 10.1126/science.1087447
Troyanskaya OG, Dolinski K et al (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100(14):8348–8353. doi: 10.1073/pnas.0832373100
Tsaparas P, Marino-Ramirez L et al (2006) Global similarity and local divergence in human and mouse gene co-expression networks. BMC Evol Biol 6:70. doi: 10.1186/1471-2148-6-70
Tzfadia O, Diels T et al (2015) CoExpNetViz: comparative co-expression networks construction and visualization tool. Front Plant Sci. doi: 10.3389/fpls.2015.01194
Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164
Usadel B, Obayashi T et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651. doi: 10.1111/j.1365-3040.2009.02040.x
van Dam S, Craig T et al (2015) GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res 43(D1):D1124–D1132
van Delft J, Gaj S et al (2012) RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo [a] pyrene. Toxicol Sci 130(2):427–439
van Noort V, Snel B et al (2004) The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep 5(3):280–284. doi: 10.1038/sj.embor.7400090
Wang YR, Huang H (2014) Review on statistical methods for gene network reconstruction using expression data. J Theor Biol 362:53–61
Wang S, Yin Y et al (2012a) Genome-scale identification of cell-wall related genes in Arabidopsis based on co-expression network analysis. BMC Plant Biol 12(1):138
Wang Y, Joseph SJ et al (2012b) SNPxGE2: a database for human SNP–coexpression associations. Bioinformatics 28(3):403–410
Wang P, Qi H et al (2014) ImmuCo: a database of gene co-expression in immune cells. Nucleic Acids Res 43:D1133–D1139
Willmann R, Lajunen HM et al (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108(49):19824–19829. doi: 10.1073/pnas.1112862108
Wolf DM, Lenburg ME et al (2014) Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS One 9(2):e88309. doi: 10.1371/journal.pone.0088309
Wolfe CJ, Kohane IS et al (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinform 6:227. doi: 10.1186/1471-2105-6-227
Wong DC, Sweetman C et al (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genom 14(1):882
Wu C-C, Huang H-C et al (2004) GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18):3691–3693
Xiong J, Lu X et al (2011) Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci Chin Life Sci 54(1):65–67
Xiong J, Lu Y et al (2013) Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database 2013:bat008
Yalamanchili HK, Li Z et al (2014) SpliceNet: recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples. Nucleic Acids Res 42(15):e121
Zhang L, Yu S et al (2012) Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One 7(5):e33748
Zhang J, Liu W et al (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129–136
Zhao J-L, Pan J-S et al (2015) Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics 105(5):296–303
Zheng X, Xue C et al (2015) Identification of crucial genes in intracranial aneurysm based on weighted gene coexpression network analysis. Cancer Gene Ther 22(5):238–245
Zhou X, Kao M-CJ et al (2002) Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci 99(20):12783–12788