Gene-centric gene–gene interaction: A model-based kernel machine method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhang, Y. and Liu, J. S. (2007). Bayesian inference of epistatic interactions in case-control studies. <i>Nat. Genet.</i> <b>39</b> 1167–1173.
Jorgenson, E. and Witte, J. S. (2006). A gene-centric approach to genome-wide association studies. <i>Nat. Rev. Genet.</i> <b>7</b> 885–891.
Wahba, G. (1990). <i>Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics</i> <b>59</b>. SIAM, Philadelphia, PA.
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011). Rare-variant association testing for sequencing data with the sequence kernel association test. <i>Am. J. Hum. Genet.</i> <b>89</b> 82–93.
Wu, M. C., Kraft, P., Epstein, M. P., Taylor, D. M., Chanock, S. J., Hunter, D. J. and Lin, X. (2010). Powerful SNP-set analysis for case-control genome-wide association studies. <i>Am. J. Hum. Genet.</i> <b>86</b> 929–942.
Kwee, L. C., Liu, D., Lin, X., Ghosh, D. and Epstein, M. P. (2008). A powerful and flexible multilocus association test for quantitative traits. <i>Am. J. Hum. Genet.</i> <b>82</b> 386–397.
Wang, K. and Abbott, D. (2008). A principal components regression approach to multilocus genetic association studies. <i>Genet. Epidemiol.</i> <b>32</b> 108–118.
Wahba, G., Wang, Y., Gu, C., Klein, R. and Klein, B. (1995). Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. <i>Ann. Statist.</i> <b>23</b> 1865–1895.
Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F. and Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. <i>Am. J. Hum. Genet.</i> <b>69</b> 138–147.
Maher, B. (2008). Personal genomes: The case of the missing heritability. <i>Nature</i> <b>456</b> 18–21.
Aronszajn, N. (1950). Theory of reproducing kernels. <i>Trans. Amer. Math. Soc.</i> <b>68</b> 337–404.
Cordell, H. J. (2009). Detecting gene–gene interactions that underlie human diseases. <i>Nat. Rev. Genet.</i> <b>10</b> 392–404.
Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H. and Nadeau, J. H. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. <i>Nat. Rev. Genet.</i> <b>11</b> 446–450.
Ma, S., Song, X. and Huang, J. (2007). Supervised group Lasso with applications to microarray data analysis. <i>BMC Bioinformatics</i> <b>8</b> 60.
Brem, B. B. and Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. <i>Proc. Natl. Acad. Sci. USA</i> <b>102</b> 1572–1577.
Brem, R. B., Yvert, G., Clinton, R. and Kruglyak, L. (2002). Genetic dissection of transcriptional regulation in budding yeast. <i>Science</i> <b>296</b> 752–755.
Buil, A., Martinez-Perez, A., Perera-Lluna, A. et al. (2009). A new gene-based association test for genome-wide association studies. <i>BMC Proc.</i> <b>3</b> S130.
Chapman, J. and Clayton, D. (2007). Detecting association using epistatic information. <i>Genet. Epidemiol.</i> <b>31</b> 894–909.
Chatterjee, N., Kalaylioglu, Z., Moslehi, R., Peters, U. and Wacholder, S. (2006). Powerful multilocus tests of genetic association in the presence of gene–gene and gene-environment interactions. <i>Am. J. Hum. Genet.</i> <b>79</b> 1002–1016.
Cui, Y., Kang, G., Sun, K., Qian, M., Romero, R. and Fu, W. (2008). Gene-centric genomewide association study via entropy. <i>Genetics</i> <b>179</b> 637–650.
Gu, C. and Wahba, G. (1993). Smoothing spline ANOVA with component-wise Bayesian “confidence intervals”. <i>J. Comput. Graph. Statist.</i> <b>2</b> 97–117.
He, J., Wang, K., Edmondson, A. C. et al. (2010). Gene-based interaction analysis by incorporating external linkage disequilibrium information. <i>Eur. J. Hum. Genet.</i> <b>19</b> 164.
Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral model of genetic variation. <i>Bioinformatics</i> <b>18</b> 337–338.
Kang, G., Yue, W., Zhang, J., Cui, Y., Zuo, Y. and Zhang, D. (2008). An entropy-based approach for testing genetic epistasis underlying complex diseases. <i>J. Theoret. Biol.</i> <b>250</b> 362–374.
Li, S., Lu, Q. and Cui, Y. (2010). A systems biology approach for identifying novel pathway regulators in eQTL mapping. <i>J. Biopharm. Statist.</i> <b>20</b> 373–400.
Li, J., Zhang, K. and Yi, N. (2011). A Bayesian hierarchical model for detecting haplotype-haplotype and haplotype-environment interactions in genetic association studies. <i>Hum. Hered.</i> <b>71</b> 148–160.
Li, S., Lu, Q., Fu, W., Romero, R. and Cui, Y. (2009). A regularized regression approach for dissecting genetic conflicts that increase disease risk in pregnancy. <i>Stat. Appl. Genet. Mol. Biol.</i> <b>8</b> Art. 45, 28.
Li, M., Romero, R., Fu, W. J. and Cui, Y. (2010). Mapping haplotype-haplotype interactions with adaptive LASSO. <i>BMC Genet.</i> <b>11</b> 79.
Liu, D., Lin, X. and Ghosh, D. (2007). Semiparametric regression of multidimensional genetic pathway data: Least-squares kernel machines and linear mixed models. <i>Biometrics</i> <b>63</b> 1079–1088, 1311.
Ma, S., Zhang, Y., Huang, J., Han, X., Holford, T., Lan, Q., Rothman, N., Boyle, P. and Zheng, T. (2010). Identification of non-Hodgkin’s lymphoma prognosis signatures using the CTGDR method. <i>Bioinformatics</i> <b>26</b> 15–21.
Moore, J. H. and Williams, S. M. (2009). Epistasis and its implications for personal genetics. <i>Am. J. Hum. Genet.</i> <b>85</b> 309–320.
Mukhopadhyay, I., Feingold, E., Weeks, D. E. and Thalamuthu, A. (2010). Association tests using kernel-based measures of multi-locus genotype similarity between individuals. <i>Genet. Epidemiol.</i> <b>34</b> 213–221.
Neale, B. M. and Sham, P. C. (2004). The future of association studies: Gene-based analysis and replication. <i>Am. J. Hum. Genet.</i> <b>75</b> 353–362.
Nezar, M. A.-S., el Baky, A. M. A., Soliman, O. A.-S., Abdel-Hady, H. A.-S., Hammad, A. M. and Al-Haggar, M. S. (2009). Endothelin-1 and leptin as markers of intrauterine growth restriction. <i>Indian J. Pediatr.</i> <b>76</b> 485–488.
Osorio, M., Torres, J., Moya, F., Pezzullo, J., Salafia, C., Baxter, R., Schwander, J. and Fant, M. (1996). Insulin-like growth factors (IGFs) and IGF binding proteins-1, -2, and -3 in newborn serum: Relationships to fetoplacental growth at term. <i>Early Hum. Dev.</i> <b>46</b> 15–26.
Perlstein, E. O., Ruderfer, D. M., Roberts, D. C., Schreiber, S. L. and Kruglyak, L. (2007). Genetic basis of individual differences in the response to small-molecule drugs in yeast. <i>Nat. Genet.</i> <b>39</b> 496–502.
Piegorsch, W. W., Weinberg, C. R. and Taylor, J. A. (1994). Non-hierarchical logistic models and case-only designs for accessing susceptibility in population-based case-control studies. <i>Stat. Med.</i> <b>13</b> 153–162.
Reigstad, L. J., Varhaug, J. E. and Lillehaug, J. R. (2005). Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. <i>FEBS J.</i> <b>272</b> 5723–5741.
Roy, A., Exinger, F. and Losson, R. (1990). cis- and trans-acting regulatory elements of the yeast URA3 promoter. <i>Mol. Cell. Biol.</i> <b>10</b> 5257–5270.
Schaid, D. J. (2010a). Genomic similarity and kernel methods I: Advancements by building on mathematical and statistical foundations. <i>Hum. Hered.</i> <b>70</b> 109–131.
Schaid, D. J. (2010b). Genomic similarity and kernel methods II: Methods for genomic information. <i>Hum. Hered.</i> <b>70</b> 132–140.
Schaid, D. J., McDonnell, S. K., Hebbring, S. J., Cunningham, J. M. and Thibodeau, S. N. (2005). Nonparametric tests of association of multiple genes with human disease. <i>Am. J. Hum. Genet.</i> <b>76</b> 780–793.
Self, S. G. and Liang, K.-Y. (1987). Large sample properties of the maximum likelihood estimator and the likelihood ratio test on the boundary of the parameter space. <i>J. Amer. Statist. Assoc.</i> <b>82</b> 605–611.
Shannon, P., Markiel, A., Ozier, O. et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. <i>Genome Res.</i> <b>3</b> 2498–2504.
Silver, K. L., Zhong, K., Leke, R. G. F., Taylor, D. W. and Kain, K. C. (2010). Dysregulation of angiopoietins is associated with placental malaria and low birth weight. <i>PLoS ONE</i> <b>5</b> e9481.
Speed, T. (1991). That BLUP is a good thing: The estimation of random effects. <i>Statist. Sci.</i> <b>6</b> 42–44.
Sun, W., Yuan, S. and Li, K.-C. (2008). Trait-trait dynamic interaction: 2D-trait eQTL mapping for genetic variation study. <i>BMC Genomics</i> <b>9</b> 242.
Thornton-Wells, T. A., Moore, J. H. and Haines, J. L. (2004). Genetics, statistics and human disease: Analytical retooling for complexity. <i>Trends Genet.</i> <b>20</b> 640–647.
Torry, D. S., Mukherjea, D., Arroyo, J. and Torry, R. J. (2003). Expression and function of placenta growth factor: Implications for abnormal placentation. <i>J. Soc. Gynecol. Investig.</i> <b>10</b> 178–188.
Tzeng, J. Y., Devlin, B., Wasserman, L. and Roeder, K. (2003). On the identification of disease mutations by the analysis of haplotype similarity and goodness of fit. <i>Am. J. Hum. Genet.</i> <b>72</b> 891–902.
Wang, T., Ho, G., Ye, K., Strickler, H. and Elston, R. C. (2009). A partial least-square approach for modeling gene–gene and gene-environment interactions when multiple markers are genotyped. <i>Genet. Epidemiol.</i> <b>33</b> 6–15.
Weeks, D. E. and Lange, K. (1988). The affected-pedigree-member method of linkage analysis. <i>Am. J. Hum. Genet.</i> <b>42</b> 315–326.
Wessel, J. and Schork, N. J. (2006). Generalized genomic distance-based regression methodology for multilocus association analysis. <i>Am. J. Hum. Genet.</i> <b>79</b> 792–806.