Gating Topology of the Proton-Coupled Oligopeptide Symporters

Structure - Tập 23 - Trang 290-301 - 2015
Philip W. Fowler1, Marcella Orwick-Rydmark1, Sebastian Radestock2, Nicolae Solcan1, Patricia M. Dijkman1, Joseph A. Lyons3, Jane Kwok1, Martin Caffrey3, Anthony Watts1, Lucy R. Forrest2, Simon Newstead1
1Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
2Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, Germany
3School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland

Tài liệu tham khảo

Abramson, 2003, Structure and mechanism of the lactose permease of Escherichia coli, Science, 301, 610, 10.1126/science.1088196 Brandl, 1986, Hypothesis about the function of membrane-buried proline residues in transport proteins, Proc. Natl. Acad. Sci. USA, 83, 917, 10.1073/pnas.83.4.917 Brandsch, 2009, Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls, Exp. Opin. Drug Metab. Toxicol., 5, 887, 10.1517/17425250903042292 Crisman, 2009, Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats, Proc. Natl. Acad. Sci. USA, 106, 20752, 10.1073/pnas.0908570106 Dahl, 2012, Bendix: intuitive helix geometry analysis and abstraction, Bioinformatics, 28, 2193, 10.1093/bioinformatics/bts357 Dang, 2010, Structure of a fucose transporter in an outward-open conformation, Nature, 467, 734, 10.1038/nature09406 Daniel, 2006, From bacteria to man: archaic proton-dependent peptide transporters at work, Physiology, 21, 93, 10.1152/physiol.00054.2005 Deng, 2014, Crystal structure of the human glucose transporter GLUT1, Nature, 510, 121, 10.1038/nature13306 Doki, 2013, Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT, Proc. Natl. Acad. Sci. USA, 110, 11343, 10.1073/pnas.1301079110 Fei, 1994, Expression cloning of a mammalian proton-coupled oligopeptide transporter, Nature, 368, 563, 10.1038/368563a0 Forrest, 2013, Structural biology. (Pseudo-)symmetrical transport, Science, 339, 399, 10.1126/science.1228465 Fowler, 2013, The pore of voltage-gated potassium ion channels is strained when closed, Nat. Commun., 4, 1872, 10.1038/ncomms2858 Guettou, 2013, Structural insights into substrate recognition in proton-dependent oligopeptide transporters, EMBO Rep., 14, 804, 10.1038/embor.2013.107 Harder, 2008, DtpB (YhiP) and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of Escherichia coli, FEBS J., 275, 3290, 10.1111/j.1742-4658.2008.06477.x Hirai, 2002, Three-dimensional structure of a bacterial oxalate transporter, Nat. Struct. Biol., 9, 597 Huang, 2003, Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli, Science, 301, 616, 10.1126/science.1087619 Hvorup, 2002, Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily, Microbiology, 148, 3760, 10.1099/00221287-148-12-3760 Jardetzky, 1966, Simple allosteric model for membrane pumps, Nature, 211, 969, 10.1038/211969a0 Jeschke, 2006, Deer analysis2006—a comprehensive software package for analyzing pulsed ELDOR data, Appl. Magn. Reson., 30, 473, 10.1007/BF03166213 Jiang, 2013, Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A, Proc. Natl. Acad. Sci. USA, 110, 14664, 10.1073/pnas.1308127110 Law, 2008, Ins and outs of major facilitator superfamily antiporters, Ann. Rev. Microbiol., 62, 289, 10.1146/annurev.micro.61.080706.093329 Leibach, 1996, Peptide transporters in the intestine and the kidney, Annu. Rev. Nutr., 16, 99, 10.1146/annurev.nu.16.070196.000531 Liao, 2012, Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger, Science, 335, 686, 10.1126/science.1215759 Luckner, 2005, Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1, FEBS J., 59, 17 Lyons, 2014, Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters, EMBO Rep., 15, 886, 10.15252/embr.201338403 Madej, 2012, Apo-intermediate in the transport cycle of lactose permease (LacY), Proc. Natl. Acad. Sci. USA, 109, E2970, 10.1073/pnas.1211183109 Mchaourab, 2011, Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy, Structure, 19, 1549, 10.1016/j.str.2011.10.009 Newstead, 2011, Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2, EMBO J., 30, 417, 10.1038/emboj.2010.309 Pao, 1998, Major facilitator superfamily, Microbiol. Mol. Biol. Rev., 62, 1, 10.1128/MMBR.62.1.1-34.1998 Parker, 2014, Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1, Nature, 507, 68, 10.1038/nature13116 Pedersen, 2013, Crystal structure of a eukaryotic phosphate transporter, Nature, 496, 533, 10.1038/nature12042 Pieri, 2009, The transmembrane tyrosines Y56, Y91 and Y167 play important roles in determining the affinity and transport rate of the rabbit proton-coupled peptide transporter PepT1, Int. J. Biochem. Cell Biol., 41, 2204, 10.1016/j.biocel.2009.04.014 Polyhach, 2011, Rotamer libraries of spin labelled cysteines for protein studies, Phys. Chem. Chem. Phys., 13, 2356, 10.1039/C0CP01865A Quistgaard, 2013, Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters, Nat. Struct. Mol. Biol., 20, 766, 10.1038/nsmb.2569 Radestock, 2011, The alternating-access mechanism of MFS transporters arises from inverted-topology repeats, J. Mol. Biol., 407, 698, 10.1016/j.jmb.2011.02.008 Reddy, 2012, The major facilitator superfamily (MFS) revisited, FEBS J., 279, 2022, 10.1111/j.1742-4658.2012.08588.x Reginsson, 2011, Pulsed electron-electron double resonance: beyond nanometre distance measurements on biomacromolecules, Biochem. J., 434, 353, 10.1042/BJ20101871 Roux, 2013, Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy, J. Phys. Chem. B, 117, 4733, 10.1021/jp3110369 Saier, 1999, The major facilitator superfamily, J. Mol. Microbiol. Biotechnol., 1, 257 Sali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779, 10.1006/jmbi.1993.1626 Schushan, 2012, A model-structure of a periplasm-facing state of the NhaA antiporter suggests the molecular underpinnings of pH-induced conformational changes, J. Biol. Chem., 287, 18249, 10.1074/jbc.M111.336446 Smart, 1996, HOLE: a program for the analysis of the pore dimensions of ion channel structural models, J. Mol. Graph., 14, 354, 10.1016/S0263-7855(97)00009-X Smirnova, 2007, Sugar binding induces an outward facing conformation of LacY, Proc. Natl. Acad. Sci. USA, 104, 16504, 10.1073/pnas.0708258104 Solcan, 2012, Alternating access mechanism in the POT family of oligopeptide transporters, EMBO J., 31, 3411, 10.1038/emboj.2012.157 Steinhardt, 1986, Kinetics and characteristics of absorption from an equimolar mixture of 12 glycyl-dipeptides in human jejunum, Gastroenterology, 90, 577, 10.1016/0016-5085(86)91111-X Stelzl, 2014, Flexible gates generate occluded intermediates in the transport cycle of LacY, J. Mol. Biol., 426, 735, 10.1016/j.jmb.2013.10.024 Sun, 2012, Crystal structure of a bacterial homologue of glucose transporters GLUT1–4, Nature, 490, 361, 10.1038/nature11524 Sun, 2014, Crystal structure of the plant dual-affinity nitrate transporter NRT1.1, Nature, 507, 73, 10.1038/nature13074 Yaffe, 2013, Identification of molecular hinge points mediating alternating access in the vesicular monoamine transporter VMAT2, Proc. Natl. Acad. Sci. USA, 110, E1332, 10.1073/pnas.1220497110 Yan, 2013, Structural advances for the major facilitator superfamily (MFS) transporters, Trends Biochem. Sci., 38, 151, 10.1016/j.tibs.2013.01.003 Yan, 2013, Structure and mechanism of a nitrate transporter, Cell Rep., 3, 716, 10.1016/j.celrep.2013.03.007 Yin, 2006, Structure of the multidrug transporter EmrD from Escherichia coli, Science, 312, 741, 10.1126/science.1125629