Gating Topology of the Proton-Coupled Oligopeptide Symporters
Tài liệu tham khảo
Abramson, 2003, Structure and mechanism of the lactose permease of Escherichia coli, Science, 301, 610, 10.1126/science.1088196
Brandl, 1986, Hypothesis about the function of membrane-buried proline residues in transport proteins, Proc. Natl. Acad. Sci. USA, 83, 917, 10.1073/pnas.83.4.917
Brandsch, 2009, Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls, Exp. Opin. Drug Metab. Toxicol., 5, 887, 10.1517/17425250903042292
Crisman, 2009, Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats, Proc. Natl. Acad. Sci. USA, 106, 20752, 10.1073/pnas.0908570106
Dahl, 2012, Bendix: intuitive helix geometry analysis and abstraction, Bioinformatics, 28, 2193, 10.1093/bioinformatics/bts357
Dang, 2010, Structure of a fucose transporter in an outward-open conformation, Nature, 467, 734, 10.1038/nature09406
Daniel, 2006, From bacteria to man: archaic proton-dependent peptide transporters at work, Physiology, 21, 93, 10.1152/physiol.00054.2005
Deng, 2014, Crystal structure of the human glucose transporter GLUT1, Nature, 510, 121, 10.1038/nature13306
Doki, 2013, Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT, Proc. Natl. Acad. Sci. USA, 110, 11343, 10.1073/pnas.1301079110
Fei, 1994, Expression cloning of a mammalian proton-coupled oligopeptide transporter, Nature, 368, 563, 10.1038/368563a0
Forrest, 2013, Structural biology. (Pseudo-)symmetrical transport, Science, 339, 399, 10.1126/science.1228465
Fowler, 2013, The pore of voltage-gated potassium ion channels is strained when closed, Nat. Commun., 4, 1872, 10.1038/ncomms2858
Guettou, 2013, Structural insights into substrate recognition in proton-dependent oligopeptide transporters, EMBO Rep., 14, 804, 10.1038/embor.2013.107
Harder, 2008, DtpB (YhiP) and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of Escherichia coli, FEBS J., 275, 3290, 10.1111/j.1742-4658.2008.06477.x
Hirai, 2002, Three-dimensional structure of a bacterial oxalate transporter, Nat. Struct. Biol., 9, 597
Huang, 2003, Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli, Science, 301, 616, 10.1126/science.1087619
Hvorup, 2002, Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily, Microbiology, 148, 3760, 10.1099/00221287-148-12-3760
Jardetzky, 1966, Simple allosteric model for membrane pumps, Nature, 211, 969, 10.1038/211969a0
Jeschke, 2006, Deer analysis2006—a comprehensive software package for analyzing pulsed ELDOR data, Appl. Magn. Reson., 30, 473, 10.1007/BF03166213
Jiang, 2013, Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A, Proc. Natl. Acad. Sci. USA, 110, 14664, 10.1073/pnas.1308127110
Law, 2008, Ins and outs of major facilitator superfamily antiporters, Ann. Rev. Microbiol., 62, 289, 10.1146/annurev.micro.61.080706.093329
Leibach, 1996, Peptide transporters in the intestine and the kidney, Annu. Rev. Nutr., 16, 99, 10.1146/annurev.nu.16.070196.000531
Liao, 2012, Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger, Science, 335, 686, 10.1126/science.1215759
Luckner, 2005, Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1, FEBS J., 59, 17
Lyons, 2014, Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters, EMBO Rep., 15, 886, 10.15252/embr.201338403
Madej, 2012, Apo-intermediate in the transport cycle of lactose permease (LacY), Proc. Natl. Acad. Sci. USA, 109, E2970, 10.1073/pnas.1211183109
Mchaourab, 2011, Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy, Structure, 19, 1549, 10.1016/j.str.2011.10.009
Newstead, 2011, Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2, EMBO J., 30, 417, 10.1038/emboj.2010.309
Pao, 1998, Major facilitator superfamily, Microbiol. Mol. Biol. Rev., 62, 1, 10.1128/MMBR.62.1.1-34.1998
Parker, 2014, Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1, Nature, 507, 68, 10.1038/nature13116
Pedersen, 2013, Crystal structure of a eukaryotic phosphate transporter, Nature, 496, 533, 10.1038/nature12042
Pieri, 2009, The transmembrane tyrosines Y56, Y91 and Y167 play important roles in determining the affinity and transport rate of the rabbit proton-coupled peptide transporter PepT1, Int. J. Biochem. Cell Biol., 41, 2204, 10.1016/j.biocel.2009.04.014
Polyhach, 2011, Rotamer libraries of spin labelled cysteines for protein studies, Phys. Chem. Chem. Phys., 13, 2356, 10.1039/C0CP01865A
Quistgaard, 2013, Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters, Nat. Struct. Mol. Biol., 20, 766, 10.1038/nsmb.2569
Radestock, 2011, The alternating-access mechanism of MFS transporters arises from inverted-topology repeats, J. Mol. Biol., 407, 698, 10.1016/j.jmb.2011.02.008
Reddy, 2012, The major facilitator superfamily (MFS) revisited, FEBS J., 279, 2022, 10.1111/j.1742-4658.2012.08588.x
Reginsson, 2011, Pulsed electron-electron double resonance: beyond nanometre distance measurements on biomacromolecules, Biochem. J., 434, 353, 10.1042/BJ20101871
Roux, 2013, Restrained-ensemble molecular dynamics simulations based on distance histograms from double electron-electron resonance spectroscopy, J. Phys. Chem. B, 117, 4733, 10.1021/jp3110369
Saier, 1999, The major facilitator superfamily, J. Mol. Microbiol. Biotechnol., 1, 257
Sali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol., 234, 779, 10.1006/jmbi.1993.1626
Schushan, 2012, A model-structure of a periplasm-facing state of the NhaA antiporter suggests the molecular underpinnings of pH-induced conformational changes, J. Biol. Chem., 287, 18249, 10.1074/jbc.M111.336446
Smart, 1996, HOLE: a program for the analysis of the pore dimensions of ion channel structural models, J. Mol. Graph., 14, 354, 10.1016/S0263-7855(97)00009-X
Smirnova, 2007, Sugar binding induces an outward facing conformation of LacY, Proc. Natl. Acad. Sci. USA, 104, 16504, 10.1073/pnas.0708258104
Solcan, 2012, Alternating access mechanism in the POT family of oligopeptide transporters, EMBO J., 31, 3411, 10.1038/emboj.2012.157
Steinhardt, 1986, Kinetics and characteristics of absorption from an equimolar mixture of 12 glycyl-dipeptides in human jejunum, Gastroenterology, 90, 577, 10.1016/0016-5085(86)91111-X
Stelzl, 2014, Flexible gates generate occluded intermediates in the transport cycle of LacY, J. Mol. Biol., 426, 735, 10.1016/j.jmb.2013.10.024
Sun, 2012, Crystal structure of a bacterial homologue of glucose transporters GLUT1–4, Nature, 490, 361, 10.1038/nature11524
Sun, 2014, Crystal structure of the plant dual-affinity nitrate transporter NRT1.1, Nature, 507, 73, 10.1038/nature13074
Yaffe, 2013, Identification of molecular hinge points mediating alternating access in the vesicular monoamine transporter VMAT2, Proc. Natl. Acad. Sci. USA, 110, E1332, 10.1073/pnas.1220497110
Yan, 2013, Structural advances for the major facilitator superfamily (MFS) transporters, Trends Biochem. Sci., 38, 151, 10.1016/j.tibs.2013.01.003
Yan, 2013, Structure and mechanism of a nitrate transporter, Cell Rep., 3, 716, 10.1016/j.celrep.2013.03.007
Yin, 2006, Structure of the multidrug transporter EmrD from Escherichia coli, Science, 312, 741, 10.1126/science.1125629