Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays

Nature Materials - Tập 11 Số 4 - Trang 301-305 - 2012
Sanghun Jeon1, Seung-Eon Ahn1, Ihun Song1, Chang Jung Kim1, U‐In Chung1, Eunha Lee2, Inkyung Yoo1, Arokia Nathan3, Sungsik Lee4, Khashayar Ghaffarzadeh4, John Robertson3, Kinam Kim1
1Semiconductor Device Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Corporation, Gyeonggi-Do 446-712, Republic of Korea
2Analytical Science Group, Samsung Advanced Institute of Technology, Samsung Electronics Corporation, Gyeonggi-Do 446-712, Republic of Korea
3Engineering Department, Centre for Advanced Photonics and Electronics, Cambridge University, Cambridge CB3 0FA, UK
4London Centre for Nanotechnology, University College London, London WC1H 0AH, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

Fortunato, E., Pereira, L. & Barquinha, P. Oxide semiconductors: Order within the order. Phil. Mag. 89, 2741–2758 (2009).

Robertson, J. Disorder, band offsets and dopability of transparent conducting oxides. Thin Solid Films 516, 1419–1425 (2008).

Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733–735 (2003).

Lany, S. & Zunger, A. Anion vacancies as a source of persistent photoconductivity in II–VI and chalcopyrite semiconductors. Phys. Rev. B 72, 035215 (2005).

Jiang, H. X. & Lin, J. Y. Percolation transition of persistent photoconductivity in II–VI mixed crystals. Phys. Rev. Lett. 64, 2547–2550 (1990).

Nomura, K. et al. Thin film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 23, 1269–1272 (2003).

Park, J. C. et al. Highly stable transparent amorphous oxide semiconductor thin film transistors having double stacked active layers. Adv. Mater. 22, 5512–5516 (2010).

Jeon, S. et al. Nanometer-scale oxide thin film transistor with potential for high density image sensor applications. ACS Appl. Mater. Int. 3, 1–6 (2011).

Lee, M-J. et al. Low temperature-grown transition metal oxide based storage materials and oxide transistors for high density non-volatile memory. Adv. Funct. Mater. 18, 1587–1593 (2008).

Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851–858 (2006).

Park, K. et al. Transparent and photo-stable ZnO thin film transistors to drive an active matrix organic-light-emitting diode display panel. Adv. Mater. 21, 678–682 (2009).

Liu, P-T., Chou, Y-T. & Teng, L-F. Charge pumping method for photosensor application by using amorphous indium–zinc oxide thin film transistors. Appl. Phys. Lett. 94, 242101 (2009).

Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

Oba, F., Togo, A., Tanaka, I., Paier, J. & Kresse, G. Defect energetics in ZnO: A hybrid Hartree–Fock density functional study. Phys. Rev. B 77, 245202 (2008).

Feng, P. et al. Giant persistent photoconductivity in rough silicon nanomembranes. Nano Lett. 9, 3453–3459 (2009).

Su, Y. K. et al. Ultraviolet ZnO nanorod photosensors. Langmuir 26, 603–606 (2010).

Suehiro, J. et al. Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17, 2567–2573 (2006).

Ryu, B., Noh, H-K., Choi, E-A. & Chang, K. J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl. Phys. Lett. 97, 022108 (2010).

Ghaffarzadeh, K. et al. Persistent photoconductivity in Hf–In–Zn–O thin film transistor. Appl. Phys. Lett. 97, 143510 (2010).

Gorrn, P., Lehnhardt, M., Riedl, T. & Kowalsky, W. The influence of visible light on transparent zinc tin oxide thin film transistors. Appl. Phys. Lett. 91, 193504 (2007).

Kamada, Y. et al. Reduction of photo-leakage current in ZnO thin film transistors with dual gate structure. IEEE Electron Devices Lett. 32, 509–511 (2011).

Jin, Y., Wang, J., Sun, B., Blakeseley, B. C. & Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 8, 1649–1653 (2008).

Soci, C. et al. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007).

Li, L. et al. Electrical transport and high performance photoconductivity in individual ZrS2 nanobelts. Adv. Mater. 22, 4151–4156 (2010).

Xia, F., Mueller, T., Lin, Y-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotechnol. 4, 839–843 (2009).

Kamiya, T., Nomura, K., Hirano, M. & Hosono, H. Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO: Optical analyses and first-principle calculations. Phys. Status Solidi C 5, 3098–3100 (2008).

Nomura, K. et al. Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive X-ray photoelectron spectroscopy. Appl. Phys. Lett. 92, 202117 (2008).

Prades, J. et al. The effect of electron–hole separation on the photoconductivity of individual metal oxide nanowires. Nanotechnology 18, 465501 (2008).

Janotti, A. & Van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005).

Kuo, Y. Thin Film Transistors: Materials and Processes Vol. 1 (Kluwer Academic, 2003).