Gate-induced carrier density modulation in bulk graphene: theories and electrostatic simulation using Matlab pdetool

Springer Science and Business Media LLC - Tập 12 Số 2 - Trang 188-202 - 2013
Ming‐Hao Liu1
1Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011). Available online: http://link.aps.org/doi/10.1103/RevModPhys.83.407

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

Huard, B., Sulpizio, J.A., Stander, N., Todd, K., Yang, B., Goldhaber-Gordon, D.: Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.98.236803

Williams, J.R., DiCarlo, L., Marcus, C.M.: Quantum hall effect in a gate-controlled p–n junction of graphene. Science 317(5838), 638–641 (2007). Available online: http://www.sciencemag.org/content/317/5838/638.abstract

Özyilmaz, B., Jarillo-Herrero, P., Efetov, D., Abanin, D.A., Levitov, L.S., Kim, P.: Electronic transport and quantum hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 99, 166804 (2007). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.99.166804

Liu, G., Velasco, J.J., Bao, W., Lau, C.N.: Fabrication of graphene p–n–p junctions with contactless top gates. Appl. Phys. Lett. 92(20), 203103 (2008). Available online: http://dx.doi.org/doi/10.1063/1.2928234

Gorbachev, R.V., Mayorov, A.S., Savchenko, A.K., Horsell, D.W., Guinea, F.: Conductance of p–n–p graphene structures with “air-bridge” top gates. Nano Lett. 8(7), 1995–1999 (2008). Available online: http://pubs.acs.org/doi/abs/10.1021/nl801059v

Cheianov, V.V., Fal’ko, V.I.: Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74(4), 041403 (2006)

Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2(9), 620 (2006)

Stander, N., Huard, B., Goldhaber-Gordon, D.: Evidence for Klein tunneling in graphene p–n junctions. Phys. Rev. Lett. 102, 026807 (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.102.026807

Young, A.F., Kim, P.: Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5(3), 222–226 (2009)

Nam, S.-G., Ki, D.-K., Park, J.W., Kim, Y., Kim, J.S., Lee, H.-J.: Ballistic transport of graphene pnp junctions with embedded local gates. Nanotechnology 22(41), 415203 (2011)

Guo, J., Yoon, Y., Ouyang, Y.: Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 7(7), 1935–1940 (2007). Available online: http://pubs.acs.org/doi/abs/10.1021/nl0706190

Fernández-Rossier, J., Palacios, J.J., Brey, L.: Electronic structure of gated graphene and graphene ribbons. Phys. Rev. B 75, 205441 (2007). Available online: http://link.aps.org/doi/10.1103/PhysRevB.75.205441

Fang, T., Konar, A., Xing, H., Jena, D., Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109 (2007). Available online: http://link.aip.org/link/?APL/91/092109/1

Shylau, A.A., Kłos, J.W., Zozoulenko, I.V.: Capacitance of graphene nanoribbons. Phys. Rev. B 80, 205402 (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevB.80.205402

Andrijauskas, T., Shylau, A.A., Zozoulenko, I.V.: Thomas-Fermi and Poisson modeling of gate electrostatics in graphene nanoribbon. Liet. Fiz. Zh. 52(1), 63–69 (2012)

Luryi, S.: Quantum capacitance devices. Appl. Phys. Lett. 52(6), 501–503 (1988). Available online: http://link.aip.org/link/?APL/52/501/1

Liu, M.-H.: Theory of carrier density in multigated doped graphene sheets with quantum correction. Phys. Rev. B 87, 125427 (2013). Available online: http://link.aps.org/doi/10.1103/PhysRevB.87.125427

Liu, M.-H., Richter, K.: Efficient quantum transport simulation for bulk graphene heterojunctions. Phys. Rev. B 86, 115455 (2012). Available online: http://link.aps.org/doi/10.1103/PhysRevB.86.115455

Shytov, A.V., Rudner, M.S., Levitov, L.S.: Klein backscattering and Fabry-Pérot interference in graphene heterojunctions. Phys. Rev. Lett. 101, 156804 (2008). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.101.156804

Krueckl, V., Richter, K.: Bloch-Zener oscillations in graphene and topological insulators. Phys. Rev. B 85, 115433 (2012). Available online: http://link.aps.org/doi/10.1103/PhysRevB.85.115433

Khomyakov, P.A., Giovannetti, G., Rusu, P.C., Brocks, G., van den Brink, J., Kelly, P.J.: First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425 (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevB.79.195425

Khomyakov, P.A., Starikov, A.A., Brocks, G., Kelly, P.J., Nonlinear screening of charges induced in graphene by metal contacts. Phys. Rev. B 82, 115437 (2010). Available online: http://link.aps.org/doi/10.1103/PhysRevB.82.115437

Partial differential equation toolboxTM User’s guide, Matlab 2012a ed., The MathWorks, Inc. (2012)

Rashba, E.I.: Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys., Solid State 2, 1109 (1960)

Bychkov, Y.A., Rashba, E.I.: Properties of a 2d electron-gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984)

Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C., Fabian, J.: Band-structure topologies of graphene: spin-orbit coupling effects from first principles. Phys. Rev. B 80, 235431 (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevB.80.235431

Abdelouahed, S., Ernst, A., Henk, J., Maznichenko, I.V., Mertig, I.: Spin-split electronic states in graphene: effects due to lattice deformation, Rashba effect, and adatoms by first principles. Phys. Rev. B 82, 125424 (2010). Available online: http://link.aps.org/doi/10.1103/PhysRevB.82.125424

Yamakage, A., Imura, K.-I., Cayssol, J., Kuramoto, Y.: Interfacial charge and spin transport in ${\mathbb{z}}_{2}$ topological insulators. Phys. Rev. B 83, 125401 (2011). Available online: http://link.aps.org/doi/10.1103/PhysRevB.83.125401

Tian, H.Y., Yang, Y.H., Wang, J.: Interfacial charge current in a magnetised/normal graphene junction. Eur. Phys. J. B 85(8) (2012)

Yamakage, A., Imura, K.I., Cayssol, J., Kuramoto, Y.: Spin-orbit effects in a graphene bipolar pn junction. EPL 87(4) (2009)

Liu, M.-H., Bundesmann, J., Richter, K.: Spin-dependent Klein tunneling in graphene: role of Rashba spin-orbit coupling. Phys. Rev. B 85, 085406 (2012). Available online: http://link.aps.org/doi/10.1103/PhysRevB.85.085406

Rataj, M., Barnaś, J.: Graphene p–n junctions with nonuniform Rashba spin-orbit coupling. Appl. Phys. Lett. 99(16), 162107 (2011). Available online: http://dx.doi.org/10.1063/1.3641873

Sánchez-Barriga, J., Varykhalov, A., Scholz, M.R., Rader, O., Marchenko, D., Rybkin, A., Shikin, A.M., Vescovo, E.: Chemical vapour deposition of graphene on Ni(111) and Co(0001) and intercalation with Au to study Dirac-Cone formation and Rashba splitting. In: Diamond and Related Materials, 19, no. 7–9, pp. 734–741, 20th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides, Athens, Greece, 6–10 Sep. 2009 (2009)

Xia, J., Chen, F., Li, J., Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009)

Dröscher, S., Roulleau, P., Molitor, F., Studerus, P., Stampfer, C., Ensslin, K., Ihn, T.: Quantum capacitance and density of states of graphene. Appl. Phys. Lett. 96(15), 152104 (2010). Available online: http://link.aip.org/link/?APL/96/152104/1

Ponomarenko, L.A., Yang, R., Gorbachev, R.V., Blake, P., Mayorov, A.S., Novoselov, K.S., Katsnelson, M.I., Geim, A.K.: Density of states and zero landau level probed through capacitance of graphene. Phys. Rev. Lett. 105, 136801 (2010). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.105.136801

Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., Von Klitzing, K., Yacoby, A.: Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4(2), 144–148 (2008)

Xu, H., Zhang, Z., Peng, L.-M.: Measurements and microscopic model of quantum capacitance in graphene. Appl. Phys. Lett. 98(13), 133122 (2011). Available online: http://link.aip.org/link/?APL/98/133122/1

Rickhaus, P., Maurand, R., Liu, M.-H., Weiss, M., Richter, K., Schönenberger, C.: Ballistic interferences in suspended graphene. March (2013, unpublished)