Gasless Combustion in Partially Mechanoactivated Binary Mixtures: Mathematical Model
Tóm tắt
In this communication, we report on the mathematical modeling of gasless combustion in partially mechanoactivated binary mixtures. The model involves the equations of heat balance, chemical kinetics, and boundary conditions, with special emphasis on the influence of mechanoactivation parameters on the process of combustion wave propagation over the system under study.
Từ khóa
Tài liệu tham khảo
Boldyrev, V.V., Mechanochemistry in Siberia, Her. Russ. Acad. Sci., 2018, vol. 88, no. 2, pp. 142–150. https://doi.org/10.1134/S1019331618020016
Rogachev, A.S., Problems and prospects for the development of mechanochemistry, Russ. Chem. Rev., 2019, vol. 88, no. 9, pp. 875–900. https://doi.org/10.1070/RCR4884
Takacs, L., The historical development of mechanochemistry, Chem. Soc. Rev., 2013, vol. 42, no. 18, pp. 7649–7659. https://doi.org/10.1039/C2CS35442J
Shuck, C.E., Manukyan, K.V., Rouvimov, S., Rogachev, A.S., and Mukasyan A.S., Solid flame: Experimental validation, Combust. Flame, 2016, vol. 163, pp. 487–493. https://doi.org/10.1016/j.combustflame.2015.10.025
Maglia, F., Anselmi-Tamburini, U, Deidda, C., Delogu, F., Cocco, G., and Munir, Z.A., Role of mechanical activation in SHS synthesis of TiC, J. Mater. Sci., 2004, vol. 39, nos. 16–17, p. 5227. https://doi.org/10.1023/B:JMSC.0000039215.28545.2f
Shkoda, O.A. and Lapshin, O.V., Mechanical activation and thermal treatment of low-energy Nb–2Si powder blend: I. The experiment, Russ. Phys. J., 2019, vol. 61, no. 11, pp. 1951–1955. https://doi.org/10.1007/s11182-019-01623-0
Bernard, F. and Gaffet, E., Mechanical alloying in SHS research, Int. J. Self-Propag. High-Temp. Synth., 2001, vol. 10, no. 2, pp. 109–132.
Tsuzuki, T. and McCormick, P., Mechanochemical synthesis of nanoparticles, J. Mater. Sci., 2004, vol. 39, nos. 16–17, pp. 5143–5146. https://doi.org/10.1023/B:JMSC.0000039199.56155.f9
Cabouro, G., Chevalier, S., Gaffet, E., Grin, Yu., and Bernard, F., Reactive sintering of molybdenum disilicide by spark plasma sintering from mechanically activated powder mixtures: Processing parameters and properties, J. Alloys Comp., 2008. vol. 465, nos. 1–2, pp. 344–355. https://doi.org/10.1016/j.jallcom.2007.10.141
Dolgoborodov, A.Yu., Mechanically activated oxidizer–fuel energetic composites, Combust., Explos., Shock Waves, 2015, vol. 51, no. 1, pp. 86–99. https://doi.org/10.1134/S0010508215010098
Delogu, F., Activation of self-sustaining high-temperature reactions by mechanical processing of Ti–C powder mixtures, Scr. Mater., 2013, vol. 69, no. 3, pp. 223–226. https://doi.org/10.1016/j.scriptamat.2013.03.033
Vadchenko, S.G., Boyarchenko, O.D., Shkodich, N.F., and Rogachev, A.S., Thermal explosion in various Ni–Al Systems: Effect of mechanical activation, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 60–64. https://doi.org/10.3103/S1061386213010123
Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mechanochemical synthesis of nanosize products in heterogeneous systems: Macroscopic kinetics, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 1, pp. 20–29. https://doi.org/10.3103/S1061386208010020
Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mathematical simulation of mechanochemical synthesis in a macroscopic approximation, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 54–59. https://doi.org/10.1134/S0040579508010077
Krishenik, P.M., Merzhanov, A.G., and Shkadinskii, K.G., Nonstationary regimes of transformation of multilayered heterogeneous systems, Combust. Explos. Shock Waves, 2002, vol. 38, no. 3, pp. 313–321. https://doi.org/10.1023/A:1015605920193