Gasless Combustion in Partially Mechanoactivated Binary Mixtures: Mathematical Model

O. V. Lapshin1, V. G. Prokof’ev1,2
1Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk State University, Tomsk, Russia

Tóm tắt

In this communication, we report on the mathematical modeling of gasless combustion in partially mechanoactivated binary mixtures. The model involves the equations of heat balance, chemical kinetics, and boundary conditions, with special emphasis on the influence of mechanoactivation parameters on the process of combustion wave propagation over the system under study.

Từ khóa


Tài liệu tham khảo

Boldyrev, V.V., Mechanochemistry in Siberia, Her. Russ. Acad. Sci., 2018, vol. 88, no. 2, pp. 142–150. https://doi.org/10.1134/S1019331618020016 Rogachev, A.S., Problems and prospects for the development of mechanochemistry, Russ. Chem. Rev., 2019, vol. 88, no. 9, pp. 875–900. https://doi.org/10.1070/RCR4884 Takacs, L., The historical development of mechanochemistry, Chem. Soc. Rev., 2013, vol. 42, no. 18, pp. 7649–7659. https://doi.org/10.1039/C2CS35442J Shuck, C.E., Manukyan, K.V., Rouvimov, S., Rogachev, A.S., and Mukasyan A.S., Solid flame: Experimental validation, Combust. Flame, 2016, vol. 163, pp. 487–493. https://doi.org/10.1016/j.combustflame.2015.10.025 Maglia, F., Anselmi-Tamburini, U, Deidda, C., Delogu, F., Cocco, G., and Munir, Z.A., Role of mechanical activation in SHS synthesis of TiC, J. Mater. Sci., 2004, vol. 39, nos. 16–17, p. 5227. https://doi.org/10.1023/B:JMSC.0000039215.28545.2f Shkoda, O.A. and Lapshin, O.V., Mechanical activation and thermal treatment of low-energy Nb–2Si powder blend: I. The experiment, Russ. Phys. J., 2019, vol. 61, no. 11, pp. 1951–1955. https://doi.org/10.1007/s11182-019-01623-0 Bernard, F. and Gaffet, E., Mechanical alloying in SHS research, Int. J. Self-Propag. High-Temp. Synth., 2001, vol. 10, no. 2, pp. 109–132. Tsuzuki, T. and McCormick, P., Mechanochemical synthesis of nanoparticles, J. Mater. Sci., 2004, vol. 39, nos. 16–17, pp. 5143–5146. https://doi.org/10.1023/B:JMSC.0000039199.56155.f9 Cabouro, G., Chevalier, S., Gaffet, E., Grin, Yu., and Bernard, F., Reactive sintering of molybdenum disilicide by spark plasma sintering from mechanically activated powder mixtures: Processing parameters and properties, J. Alloys Comp., 2008. vol. 465, nos. 1–2, pp. 344–355. https://doi.org/10.1016/j.jallcom.2007.10.141 Dolgoborodov, A.Yu., Mechanically activated oxidizer–fuel energetic composites, Combust., Explos., Shock Waves, 2015, vol. 51, no. 1, pp. 86–99. https://doi.org/10.1134/S0010508215010098 Delogu, F., Activation of self-sustaining high-temperature reactions by mechanical processing of Ti–C powder mixtures, Scr. Mater., 2013, vol. 69, no. 3, pp. 223–226. https://doi.org/10.1016/j.scriptamat.2013.03.033 Vadchenko, S.G., Boyarchenko, O.D., Shkodich, N.F., and Rogachev, A.S., Thermal explosion in various Ni–Al Systems: Effect of mechanical activation, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 60–64. https://doi.org/10.3103/S1061386213010123 Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mechanochemical synthesis of nanosize products in heterogeneous systems: Macroscopic kinetics, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 1, pp. 20–29. https://doi.org/10.3103/S1061386208010020 Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mathematical simulation of mechanochemical synthesis in a macroscopic approximation, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 54–59. https://doi.org/10.1134/S0040579508010077 Krishenik, P.M., Merzhanov, A.G., and Shkadinskii, K.G., Nonstationary regimes of transformation of multilayered heterogeneous systems, Combust. Explos. Shock Waves, 2002, vol. 38, no. 3, pp. 313–321. https://doi.org/10.1023/A:1015605920193