Gas sensors using hierarchical and hollow oxide nanostructures: Overview

Elsevier BV - Tập 140 Số 1 - Trang 319-336 - 2009
Jong‐Heun Lee1
1Department of Materials Science and Engineering, Korea University, Anam-Dong, Sungbuk-Gu, Seoul 136-713, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yamazoe, 2005, Toward innovations of gas sensor technology, Sens. Actuators B, 108, 2, 10.1016/j.snb.2004.12.075

Shimizu, 1999, Basic aspects and challenges of semiconductor gas sensors, MRS Bull., 24, 18, 10.1557/S0883769400052465

Park, 2003, Ceramics for chemical sensing, J. Mater. Sci., 38, 4611, 10.1023/A:1027402430153

Barsan, 2001, Conduction model of metal oxide gas sensors, J. Electroceram., 7, 143, 10.1023/A:1014405811371

Huang, 2007, Chemical sensors based on nanostructured materials, Sens. Actuators B, 122, 659, 10.1016/j.snb.2006.06.022

Soulantica, 2003, Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing, Adv. Funct. Mater., 13, 553, 10.1002/adfm.200304291

Kolmakov, 2003, Detection of CO and O2 using tin oxide nanowire sensor, Adv. Mater., 15, 997, 10.1002/adma.200304889

Kolmakov, 2005, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett., 5, 667, 10.1021/nl050082v

Choi, 2008, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity, Nanotechnology, 19, 095508, 10.1088/0957-4484/19/9/095508

Comini, 2007, Controlled growth and sensing properties of In2O3 nanowires, Cryst. Growth Des., 7, 2500, 10.1021/cg070209p

Kim, 2006, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers, Nano Lett., 6, 2009, 10.1021/nl061197h

Yoo, 2004, Nanocarving of bulk titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas, Adv. Mater., 16, 260, 10.1002/adma.200305781

Wang, 2003, Precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc., 125, 16176, 10.1021/ja037743f

Zhang, 2004, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett., 4, 1919, 10.1021/nl0489283

Hwang, 2009, A facile fabrication of semiconductor nanowires gas sensor using PDMS patterning and solution deposition, Sens. Actuators B, 136, 224, 10.1016/j.snb.2008.10.042

Park, 2009, Gas sensing characteristics of polycrystalline SnO2 nanowires prepared by polyol method, Sens. Actuators B, 136, 151, 10.1016/j.snb.2008.10.002

Kim, 2008, CuO nanowire gas sensors for air quality control in automotive cabin, Sens. Actuators B, 135, 298, 10.1016/j.snb.2008.08.026

Varghese, 2003, Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater., 15, 624, 10.1002/adma.200304586

Li, 2005, Co3O4, nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 15, 851, 10.1002/adfm.200400429

Dong, 2007, Influence of hierarchical nanostructures to the gas sensing properties of SnO2 biomorphic films, Sens. Actuators B, 123, 420, 10.1016/j.snb.2006.09.018

Comini, 2002, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett., 81, 1869, 10.1063/1.1504867

Law, 2002, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed., 41, 2405, 10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3

Moon, 2008, Highly sensitive and fast responding CO sensor using SnO2 nanosheets, Sens. Actuators B, 131, 556, 10.1016/j.snb.2007.12.040

Xiangfeng, 2007, The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods, Sens. Actuators B, 123, 793, 10.1016/j.snb.2006.10.020

Xu, 1991, Grain size effects on gas sensitivity of porous SnO2-based elements, Sens. Actuators B, 3, 147, 10.1016/0925-4005(91)80207-Z

Kim, 2004, SnO2 thin film gas sensor fabricated by ion beam deposition, Sens. Actuators B, 98, 239, 10.1016/j.snb.2003.10.023

Shoyama, 2003, Effect of poly ethylene glycol addition on the microstructure and sensor characteristics of SnO2 thin films prepared by sol–gel method, Sens. Actuators B, 93, 585, 10.1016/S0925-4005(03)00215-6

Korotchenkov, 2005, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B, 107, 209, 10.1016/j.snb.2004.10.006

Comini, 2009, Quasi-one dimensional metal oxide semiconductors: preparation and characterization and application as chemical sensors, Prog. Mater. Sci., 54, 1, 10.1016/j.pmatsci.2008.06.003

Kolmakov, 2004, Chemical sensing and catalyst by one-dimensional metal oxide nanostructures, Annu. Rev. Mater. Res., 34, 151, 10.1146/annurev.matsci.34.040203.112141

Xia, 2003, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15, 353, 10.1002/adma.200390087

Ciesla, 1999, Ordered mesoporous materials, Micropor. Mesopor. Mater., 27, 131, 10.1016/S1387-1811(98)00249-2

Yang, 1998, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 396, 152, 10.1038/24132

Shon, 2009, Solvent-free infilteration method for mesoporous SnO2 using mesoporous silica templates, Micropor. Mesopor. Mater., 120, 441, 10.1016/j.micromeso.2008.12.022

Shimizu, 2004, Mesoporous semiconducting oxides for gas sensor application, J. Eur. Ceram. Soc., 24, 1389, 10.1016/S0955-2219(03)00511-9

Shimizu, 2005, Preparation of large mesoporous SnO2 powders for gas sensor application, Sens. Actuators B, 108, 56, 10.1016/j.snb.2004.10.047

Yue, 2008, Crystalline mesoporous metal oxide, Progr. Nat. Sci., 18, 1329, 10.1016/j.pnsc.2008.05.010

Devi, 2002, Synthesis of mesoporous TiO2-based powders and their gas-sensing properties, Sens. Actuators B, 87, 122, 10.1016/S0925-4005(02)00228-9

Hyodo, 2003, Gas-sensing properties of ordered mesoporous SnO2 and effects of coating thereof, Sens. Actuators B, 93, 590, 10.1016/S0925-4005(03)00208-9

Wagner, 2007, Ordered mesoporous ZnO for gas sensing, Thin Solid Film, 515, 8360, 10.1016/j.tsf.2007.03.021

Yang, 2008, Synthesis of nano-SnO2/SBA-15 composite as a highly sensitive semiconductor oxide gas sensor, Mater. Lett., 62, 1441, 10.1016/j.matlet.2007.08.081

Wagner, 2006, Gas sensing properties of ordered mesoporous SnO2, Sensors, 6, 318, 10.3390/s6040318

Liu, 2009, Fabrication and CO sensing properties of mesostructured ZnO gas sensors, Electrochem. Solid. State Lett., 156, J16

Waitz, 2009, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor, Adv. Funct. Mater., 19, 653, 10.1002/adfm.200801458

Liu, 2007, Aqueous route for mesoporous metal oxides using inorganic metal source and their applications, Micropor. Mesopor. Mater., 100, 233, 10.1016/j.micromeso.2006.10.041

Rossinyol, 2007, Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection, Sens. Actuators B, 126, 18, 10.1016/j.snb.2006.10.017

Rossinyol, 2007, Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications, Adv. Funct. Mater., 17, 1801, 10.1002/adfm.200600722

Caruso, 2001, Nanoengineering of particle surfaces, Adv. Mater., 13, 11, 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N

Caruso, 1998, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282, 1111, 10.1126/science.282.5391.1111

Meyer, 1994, Lead zirconate titanate hollow-sphere transducers, J. Am. Ceram. Soc., 77, 1669, 10.1111/j.1151-2916.1994.tb09775.x

Han, 2005, Simple synthesis of hollow tin dioxide microspheres and their applications to lithium-ion battery anodes, Adv. Funct. Mater., 15, 1845, 10.1002/adfm.200500243

Lou, 2008, Hollow micro-/nanostructures: synthesis and applications, Adv. Mater., 20, 3987, 10.1002/adma.200800854

Hyodo, 2005, Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2, Sens. Actuators B, 106, 580, 10.1016/j.snb.2004.07.024

Tan, 2008, Fast-response and high sensitivity gas sensors based on SnO2 hollow spheres, Thin Solid Films, 516, 7840, 10.1016/j.tsf.2008.04.105

Zhang, 2009, NO2 sensing performance of SnO2 hollow-sphere sensor, Sens. Actuators B, 135, 610, 10.1016/j.snb.2008.09.026

Zhong, 2000, Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads, Adv. Mater., 12, 206, 10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5

Martinez, 2005, Porous tin oxide nanostructured microspheres for sensor applications, Langmuir, 21, 7937, 10.1021/la050118z

Yang, 2007, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment, J. Phys. Chem. C, 111, 14067, 10.1021/jp074159a

Zhao, 2008, Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts, Eur. J. Inorg. Chem., 1643

Wang, 2008, Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres, J. Solid State Chem., 181, 122, 10.1016/j.jssc.2007.11.010

Lou, 2006, Template-free synthesis of SnO2 hollow nanostructures with high lithium capacity, Adv. Mater., 18, 2325, 10.1002/adma.200600733

Wang, 2008, Fabrication and gas-sensing properties of hollow SnO2 microspheres, Chem. Lett., 37, 1086, 10.1246/cl.2008.1086

Cabanas, 1999, Application of a modified ultrasonic aerosol device to the synthesis of SnO2 and Pt/SnO2 for gas sensors, J. Solid State Chem., 144, 86, 10.1006/jssc.1998.8122

Cong, 2007, Hybrid-dye hollow spheres with new optical properties from a self-assembly process based on Evans blue dye and cetyltrimethylammonium bromide, Adv. Funct. Mater., 17, 1814, 10.1002/adfm.200601082

Wu, 2008, Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities, Cryst. Growth Des., 8, 3010, 10.1021/cg800126r

Tao, 2008, Controllable preparation of ZnO hollow microspheres by self-assembled block copolymer, Colloids Surf. A, 330, 67, 10.1016/j.colsurfa.2008.07.035

Zhang, 2008, Fabrication of ZnO hollow nanospheres and “jingle bell” shaped nanospheres, Mater. Lett., 62, 1435, 10.1016/j.matlet.2007.08.079

Zhang, 2008, Inorganic cluster synthesis and characterization of transition-metal-doped ZnO hollow spheres, Cryst. Growth Des., 8, 2609, 10.1021/cg800260h

Mo, 2005, Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres, Adv. Mater., 17, 756, 10.1002/adma.200401477

Zhang, 2007, From ZnO nanorods to 3D hollow mircohemispheres: solvothermal synthesis, photoluminescence and gas sensor properties, Nanotechnology, 18, 455604, 10.1088/0957-4484/18/45/455604

Tian, 2008, Synthesis of zinc oxide hollow spherical structure via precursor-template and formation mechanism, J. Phys. Soc. Jpn., 77, 07463, 10.1143/JPSJ.77.074603

Xingfu, 2008, Hollow microsphere assembly of ZnO nanosheets, Mater. Chem. Phys., 112, 592, 10.1016/j.matchemphys.2008.06.025

Li, 2004, Highly sensitive WO3 hollow-sphere gas sensors, Inorg. Chem., 43, 5442, 10.1021/ic049522w

Yu, 2008, Spontaneous formation of tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation, Small, 4, 87, 10.1002/smll.200700738

Zhao, 2006, Facile preparation of strontium tungstate and tungsten trioxide hollow spheres, J. Am. Ceram. Soc., 89, 2960, 10.1111/j.1551-2916.2006.01140.x

Chen, 2008, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties, Adv. Funct. Mater., 18, 1922, 10.1002/adfm.200701468

Caruso, 2001, Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles, Adv. Mater., 13, 740, 10.1002/1521-4095(200105)13:10<740::AID-ADMA740>3.0.CO;2-6

Li, 2007, Facile fabrication of hollow mono-dispersed TiO2 spheres in an aqueous solution, J. Am. Ceram. Soc., 90, 2667, 10.1111/j.1551-2916.2007.01810.x

Lee, 2004, Coating of TiO2 nano-layer on spherical Ni particles using novel sol–gel route, J. Mater. Res., 19, 1669, 10.1557/JMR.2004.0213

Lee, 2003, Coating of BaTiO3 nano-layer on spherical Ni powders for MLCC, Adv. Mater., 15, 1655, 10.1002/adma.200305418

Jokanović, 2004, Designing of nanostructured hollow TiO2 spheres obtained by ultrasonic spray pyrolysis, J. Colloid Interface Sci., 278, 342, 10.1016/j.jcis.2004.06.008

Yang, 2004, Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening, J. Phys. Chem. B., 108, 3492, 10.1021/jp0377782

Kim, 2008, Macroporous TiO2 thin film gas sensors obtained using colloidal templates, Sens. Actuators B, 130, 9, 10.1016/j.snb.2007.07.092

Choi, 2009, Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres, Sens. Actuators B., 138, 497, 10.1016/j.snb.2009.02.016

Li, 2006, In2O3 hollow microspheres: synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysts, Langmuir, 22, 9380, 10.1021/la061844k

Shiho, 2000, Iron compounds as coatings on polystyrene latex, J. Colloid Interface Sci., 226, 91, 10.1006/jcis.2000.6789

Caruso, 2001, Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chem. Mater., 13, 109, 10.1021/cm001164h

Jia, 2008, Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field, J. Phys. Chem. C, 112, 666, 10.1021/jp0763477

Choi, 2007, Template synthesis of porous capsules with a controllable surface morphology and their application as gas sensors, Adv. Funct. Mater., 17, 1743, 10.1002/adfm.200601002

Zhang, 2007, One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties, Adv. Funct. Mater., 17, 2766, 10.1002/adfm.200601146

Zhang, 2007, Gas-sensing properties of hollow and hierarchical copper oxide microspheres, Sens. Actuators B, 128, 293, 10.1016/j.snb.2007.06.013

Gao, 2008, Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries, J. Phys. Chem. C, 112, 19324, 10.1021/jp808545r

Wang, 2005, Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures, J. Phys. Chem. B, 109, 1125, 10.1021/jp046797o

Yu, 2009, Novel gas sensoring materials based on CuS hollow spheres, Micropor. Mesopor. Mater., 118, 423, 10.1016/j.micromeso.2008.09.035

Wang, 2007, ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties, Adv. Funct. Mater., 17, 59, 10.1002/adfm.200600431

Kawahashi, 1990, Preparation and properties of uniform coated colloidal particles, J. Colloid Interface Sci., 138, 534, 10.1016/0021-9797(90)90235-G

Radice, 2008, Method for functionalization of microsized polystyrene beads with titania nanoparticles for cathodic electrophoretic deposition, J. Colloid Interface Sci., 318, 264, 10.1016/j.jcis.2007.10.061

Somiya, 2000, Hydrothermal synthesis of fine oxide particles, Bull. Mater. Sci., 23, 453, 10.1007/BF02903883

Yao, 2007, Recent advances in hydrothermal syntheses of low dimensional nanoarchitectures, Int. J. Nanotechnol., 4, 129, 10.1504/IJNT.2007.012320

Byrappa, 2007, Hydrothermal technology for nanotechnology, Progr. Cryst. Growth Charact. Mater., 53, 117, 10.1016/j.pcrysgrow.2007.04.001

Rajamathi, 2002, Oxide and chalgogenide nanoparticles from hydrothermal/solvothermal reactions, Curr. Opin. Solid State Mater. Sci., 6, 337, 10.1016/S1359-0286(02)00029-3

Messing, 1993, Ceramic powder synthesis by spray pyrolysis, J. Am. Ceram. Soc., 76, 2707, 10.1111/j.1151-2916.1993.tb04007.x

Jain, 1997, Morphology of single-component particles produced by spray pyrolysis, Aerosol Sci. Technol., 27, 575, 10.1080/02786829708965498

Ju, 2008, Fine-sized LiBi0.8Co0.15Mn0.05O2 cathode powders prepared by combined process of gas-phase reaction and solid-state reaction methods, J. Power Sources, 178, 387, 10.1016/j.jpowsour.2007.11.112

Zhang, 1991, YBa2Cu3O7−x superconductor powder synthesis by spray pyrolysis of organic acid solutions, J. Aerosol Sci., 22, 585, 10.1016/0021-8502(91)90014-9

Lee, 1993, Preparation of spherical TiO2/SnO2 powders by ultrasonic spray pyrolysis and its spinodal decomposition, J. Mater. Sci.: Mater. Electron., 4, 254, 10.1007/BF00179220

Kim, 1995, Preparation of spherical Pb(Zr,Ti)O3 powders by ultrasonic spray pyrolysis, J. Mater. Sci.: Mater. Electron., 6, 84, 10.1007/BF00188189

Cho, 1995, Preparation of spherical (Zr,Sn)TiO4 powders by ultrasonic spray pyrolysis, J. Mater. Sci., 30, 3274, 10.1007/BF01209249

Zeng, 2006, Synthetic architecture of interior space for inorganic nanostructures, J. Mater. Chem., 16, 649, 10.1039/B511296F

Yin, 2004, Formation of hollow nanocrystals through the nanoscale Kirkendall effect, Science, 30, 711, 10.1126/science.1096566

Fan, 2007, Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review, Small, 3, 1660, 10.1002/smll.200700382

Liu, 2004, Fabrication of ZnO “Dandelions” via a modified Kirkendall process, J. Am. Ceram. Soc., 126, 16744

Gaiduk, 2008, Synthesis and analysis of hollow SnO2 nanoislands, Appl. Phys. Lett., 92, 193112, 10.1063/1.2917801

Brinzari, 2001, Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control, Thin Solid Films, 391, 167, 10.1016/S0040-6090(01)00978-6

Sakai, 2001, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor, Sens. Actuators B, 80, 125, 10.1016/S0925-4005(01)00890-5

Bruno, 1994, Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: influence of grain size and thickness on the electrical properties, Sens. Actuators B, 18–19, 195, 10.1016/0925-4005(94)87083-7

Korochenkov, 2004, The influence of film structure on In2O3 gas response, Thin Solid Film, 460, 315, 10.1016/j.tsf.2004.02.018

Kawasashi, 1991, Preparation of hollow spherical particles of yttrium compounds, J. Colloid Interface Sci., 143, 103, 10.1016/0021-9797(91)90442-B

H.-R. Kim, K.-I. Choi, J.-H. Lee, unpublished work.

Hieda, 2008, Preparation of porous tin oxide by ultrasonic spray pyrolysis and their application to sensor materials, Sens. Actuators B, 133, 144, 10.1016/j.snb.2008.02.002

Kim, 2006, Microsphere templating as means of enhancing surface activity and gas sensitivity of CaCu3Ti4O12 thin films, Nano Lett., 6, 193, 10.1021/nl051965p

Jun, 2006, CO sensing performance in micro-arc oxidized TiO2 films for air quality control, Sens. Actuators B, 120, 69, 10.1016/j.snb.2006.01.045

Weber, 2001, A study of the SnO2·Nb2O5 system for an ethanol vapor sensor: a correlation between microstructure and sensor performance, Sens. Actuators B, 72, 180, 10.1016/S0925-4005(00)00648-1

Shinde, 2007, Use of chemically synthesized ZnO thin films as a liquefied petroleum gas sensor, Mater. Sci. Eng. B, 137, 119, 10.1016/j.mseb.2006.11.008

Chou, 2007, Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency, Adv. Mater., 19, 2588, 10.1002/adma.200602927

Hu, 2008, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 90, 2977, 10.1002/adma.200800623

Cao, 2006, Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors, J. Phys. Chem. B., 110, 15858, 10.1021/jp0632438

Zhang, 2007, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts, J. Mater. Chem., 17, 2526, 10.1039/b616460a

Xu, 2008, Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: large-scale synthesis and high photocatalytic activity, J. Solid State Chem., 181, 2516, 10.1016/j.jssc.2008.06.019

Sun, 2008, Bi5FeTi3O15 hierarchical microflowers: hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysts, J. Phys. Chem. C, 112, 17835, 10.1021/jp807379c

Hosono, 2006, Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer-wire structure and characteristics for high rate Li rechargeable battery, J. Electrochem. Soc., 153, A1273, 10.1149/1.2195887

Sun, 2007, Controlled growth of SnO2 hierarchical nanostructures by a multistep thermal vapor deposition process, J. Eur. Chem., 13, 9087, 10.1002/chem.200700448

Wang, 2007, Synthesis and filed emission of two kinds of hierarchical SnO2 nanostructures, Solid State Commun., 143, 260, 10.1016/j.ssc.2007.05.023

Qin, 2008, The template-free synthesis of square-shaped SnO2 nanowires: the temperature effect and acetone gas sensors, Nanotechnology, 19, 185705, 10.1088/0957-4484/19/18/185705

Cheng, 2007, Controlled growth of oxygen-deficient tin oxide nanostructures via a solvothermal approach in mixed solvents and their optical properties, Nanotechnology, 18, 355604, 10.1088/0957-4484/18/35/355604

Ohgi, 2005, Evolution of nanoscale SnO2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solution, Cryst. Growth Des., 5, 1079, 10.1021/cg049644z

Kim, 2009, Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres, Sens. Actuators B, 136, 138, 10.1016/j.snb.2008.11.016

Yan, 2008, Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature, J. Appl. Phys., 93, 457, 10.1007/s00339-008-4772-z

Mo, 2008, In situ self-assembly of thin ZnO nanoplatelets into hierarchical mesocrystal microtubules with surface grafting of nanorods: a general strategy towards hollow mesocrystal structures, Adv. Mater., 20, 339, 10.1002/adma.200701137

Zhang, 2008, Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance, J. Appl. Phys., 103, 104305, 10.1063/1.2924430

Cho, 2006, NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method, J. Electroceram., 17, 975, 10.1007/s10832-006-8146-7

Peng, 2006, Synthesis and structures of morphology-controlled ZnO nano- and microcrystals, Cryst. Growth Des., 6, 1518, 10.1021/cg0505261

Zhu, 2006, Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors, Chem. Mater., 18, 4473, 10.1021/cm060472y

Zhu, 2008, Microwave-assisted synthesis of various ZnO hierarchical nanostructures: effects of heating parameters of microwave oven, Cryst. Growth Des., 8, 3148, 10.1021/cg0704504

Li, 2008, Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force, Inorg. Chem., 47, 3140, 10.1021/ic7021598

Zeng, 2007, Nanosheet-based microspheres of Eu3+-doped ZnO with efficient energy transfer from ZnO to Eu3+ at room temperature, Adv. Mater., 19, 4510, 10.1002/adma.200602396

Zeng, 2008, Synthesis and photoluminescent properties of rare earth doped ZnO hierarchical microspheres, J. Phys. Chem. C, 112, 3503, 10.1021/jp0768118

Zhang, 2008, Hierarchical construction of ZnO Architectures promoted by heterogeneous Nucleation, Cryst. Growth Des., 8, 3609, 10.1021/cg800143x

Baek, 2006, A novel heteronanostructure system: hierarchical W nanothorn arrays on WO3 nanowhiskers, Adv. Mater., 18, 3105, 10.1002/adma.200601021

Gu, 2006, Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures, J. Phys. Chem., 110, 23829, 10.1021/jp065170y

Zhou, 2005, Three-Dimensional yungsten oxide nanowire networks, Adv. Mater., 17, 2107, 10.1002/adma.200500885

Ponzoni, 2006, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett., 88, 203101, 10.1063/1.2203932

Takezawa, 2006, Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area, Small, 3, 390, 10.1002/smll.200500343

Hu, 2007, Fast production of self-assembled hierarchical α-Fe2O3 nanoarchitectures, J. Phys. Chem. C, 111, 11180, 10.1021/jp073073e

Xue, 2008, Microwave fabrication and magnetic property of hierarchical spherical α-Fe2O3 nanostructures, Chem. Lett., 37, 1058, 10.1246/cl.2008.1058

Gou, 2008, Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterization and application for gas-sensing, Chem. Eur. J., 14, 5996, 10.1002/chem.200701705

Keyson, 2008, CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method, Mater. Res. Bull., 43, 771, 10.1016/j.materresbull.2007.03.019

Yang, 2007, Controlled synthesis of CuO nanostructures by a simple solution route, J. Solid State Chem., 180, 1390, 10.1016/j.jssc.2007.02.008

Li, 2008, Ammonia-evaporation-induced synthetic method for metal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures, Chem. Mater., 20, 567, 10.1021/cm070784g

Bai, 2007, A facile route to sea urchin-like NiO architectures, Mater. Lett., 61, 1698, 10.1016/j.matlet.2006.07.102

Zhang, 2005, Hierarchical assembly of SnO2 nanorods arrays on α-Fe2O3 nanotubes: a case of interfacial lattice compatibility, J. Am. Chem. Soc., 127, 13492, 10.1021/ja054771k

Chen, 2008, The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures, Nanotechnology, 19, 205603, 10.1088/0957-4484/19/20/205603

Lao, 2002, Hierarchical ZnO nanostructures, Nano Lett., 2, 1287, 10.1021/nl025753t

Mazeina, 2009, Controlled growth of parallel oriented ZnO nanostructural array on GaO nanowires, Cryst. Growth Des., 9, 1164, 10.1021/cg800993b

Xu, 2007, Self-assembly and hierarchical organization of Ga2O3/In2O3 nanostructures, J. Phys. Chem. B, 111, 760, 10.1021/jp066609p

Rao, 2003, Inorganic nanowires, Progr. Solid State Chem., 31, 5, 10.1016/j.progsolidstchem.2003.08.001

Xia, 2003, One-dimensional nanostructures: synthesis characterization, and application, Adv. Mater., 15, 353, 10.1002/adma.200390087

Dai, 2003, Novel nanostructures of functional oxide synthesized by thermal evaporation, Adv. Funct. Mater., 13, 9, 10.1002/adfm.200390013

Yang, 2002, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater., 12, 323, 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G

Zhang, 2003, Oxide-assisted growth of semiconducting nanowires, Adv. Mater., 15, 635, 10.1002/adma.200301641

Dai, 2002, Synthesis and optical properties of tetrapod-like zinc oxide nanorods, Chem. Phys. Lett., 358, 83, 10.1016/S0009-2614(02)00582-1

Rao, 2004, Carbon-assisted synthesis of inorganic nanowires, J. Mater. Chem., 14, 440, 10.1039/b310387k

Uchiyama, 2006, Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system, Cryst. Growth Des., 6, 2186, 10.1021/cg060328p

Dai, 2002, Growth and structure evolution of novel tin oxide diskettes, J. Am. Chem. Soc., 124, 8673, 10.1021/ja026262d

Korotchenkov, 2003, Structural and gas response characterization of nano-size SnO2 films deposited by SILD method, Sens. Actuators B, 96, 602, 10.1016/j.snb.2003.07.002

Williams, 2000, Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides, Sens. Actuators B, 70, 214, 10.1016/S0925-4005(00)00572-4

Korotcenkov, 2008, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Mater. Sci. Eng. R, 61, 1, 10.1016/j.mser.2008.02.001

Ivanovskaya, 2003, Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol, Sens. Actuators B, 498, 10.1016/S0925-4005(03)00624-5

Kim, 2007, The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition, Sens. Actuators B, 123, 318, 10.1016/j.snb.2006.08.028

Gutierrez-Osuna, 1999, Transient response analysis of an electronic nose using multi-exponential models, Sens. Actuators B, 61, 170, 10.1016/S0925-4005(99)00290-7

Galdikas, 2003, Influence of heterogeneous reaction rate on response kinetics of metal oxide gas sensors: application to the recognition of an odour, Sens. Actuators B, 95, 244, 10.1016/S0925-4005(03)00434-9

Lee, 2009, 295

Costello, 2003, Thick film organic vapour sensors based on binary mixtures, Sens. Actuators B, 92, 159, 10.1016/S0925-4005(03)00258-2

Lee, 2005, Uniform coating of nanometer-scale BaTiO3 layer on spherical Ni particles via hydrothermal conversion of Ti-hydroxide, J. Am. Ceram. Soc., 88, 303, 10.1111/j.1551-2916.2005.00104.x

Cabot, 2001, Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances, where and how stay the catalytic atoms, Sens. Actuators B, 79, 98, 10.1016/S0925-4005(01)00854-1

Shimizu, 2001, Improvement of SO2 sensing properties of WO3 by noble metal loading, Sens. Actuators B, 77, 35, 10.1016/S0925-4005(01)00669-4

Yuasa, 2009, Nano-sized PdO loaded SnO2 nanoparticle by reverse micelle method for highly sensitive CO gas sensor, Sens. Actuators B, 136, 99, 10.1016/j.snb.2008.11.022

Lee, 2008, Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films, Sens. Actuators B, 132, 239, 10.1016/j.snb.2008.01.028

Hieu, 2008, Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3, Sens. Actuators B, 133, 228, 10.1016/j.snb.2008.02.018

Choi, 2005, Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2, Sens. Actuators B, 107, 397, 10.1016/j.snb.2004.10.033

Tamaki, 1998, Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method, Sens. Actuators B, 49, 121, 10.1016/S0925-4005(98)00144-0

Shen, 2005, The preparation of ZnO based gas-sensing thin films by ink-jet printing method, Thin Solid Films, 483, 382, 10.1016/j.tsf.2005.01.015