Gas discharge plasmas and their applications

Spectrochimica Acta Part B: Atomic Spectroscopy - Tập 57 Số 4 - Trang 609-658 - 2002
Annemie Bogaerts1, Erik C. Neyts1, R. Gijbels1, Joost van der Mullen2
1University of Antwerp, Department of Chemistry, Universiteitsplein 1, B‐2610 Wilrijk‐Antwerp, Belgium
2Eindhoven University of Technology, Department of Applied Physics, Den Dolech 2 Postbus 513, 5600 MB Eindhoven, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lieberman, 1994

Fiala, 1994, Two-dimensional hybrid model of low-pressure glow discharges, Phys. Rev. E, 49, 5607, 10.1103/PhysRevE.49.5607

Chapman, 1980

Grill, 1994

Bogaerts, 2002, Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry, Spectrochim. Acta Part B, 57, 109, 10.1016/S0584-8547(01)00357-3

Surendra, 1990, Electron heating in low pressure rf glow discharges, Appl. Phys. Lett., 56, 1022, 10.1063/1.102604

Levitskii, 1957, An investigation of the sparking potential of a HF discharge in a gas in the transition range of frequencies and pressures, Sov. Phys.- Tech. Phys., 2, 887

Godyak, 1986, Ion bombardment secondary electron maintenance of steady rf discharges, IEEE Trans. Plasma Sci., PS-14, 112, 10.1109/TPS.1986.4316513

Vidaud, 1988, Alpha and gamma rf capacitive discharges at intermediate pressures, J. Phys. D: Appl. Phys., 21, 57, 10.1088/0022-3727/21/1/009

Belenguer, 1990, Transition between different regimes of rf glow discharges, Phys. Rev. A, 41, 4447, 10.1103/PhysRevA.41.4447

Godyak, 1992, Evolution of the electron energy distribution function during rf discharge transition to the high voltage mode, Phys. Rev. Lett., 68, 40, 10.1103/PhysRevLett.68.40

Odrobina, 1996, Discontinuous transitions between alpha and gamma regimes of rf capacitive discharge, Plasma Sources Sci. Technol., 5, 517, 10.1088/0963-0252/5/3/020

Conrads, 2000, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441, 10.1088/0963-0252/9/4/301

Walden, 1996, Microsecond-pulse glow discharge atomic emission, Fresenius J. Anal. Chem., 355, 442, 10.1007/s0021663550442

Oxley, 2000, Quantitative depth analysis using microsecond pulsed glow discharge atomic emission spectrometry, J. Anal. At. Spectrom., 15, 1241, 10.1039/b001969k

Guiberteau, 1997, Modelling the pulsed glow discharge of a nitriding reactor, Surf. Coat. Technol., 97, 552, 10.1016/S0257-8972(97)00188-6

Beer, 1999, Dynamics of a pulsed DC discharge used for plasma-assisted chemical vapor deposition: a case study for titanium nitride deposition, Surf. Coat. Technol., 120, 331, 10.1016/S0257-8972(99)00486-7

Francis, 1956, The glow discharge at low pressure

Raizer, 1991

Schoenbach, 1997, High-pressure hollow cathode discharges, Plasmas Sources Sci. Technol., 6, 468, 10.1088/0963-0252/6/4/003

Stark, 1999, Direct current high-pressure glow discharges, J. Appl. Phys., 85, 2075, 10.1063/1.369505

Stark, 1999, Direct current glow discharges in atmospheric air, Appl. Phys. Lett., 74, 3770, 10.1063/1.124174

Czerfalvi, 1993, Emission studies on a glow discharge in atmospheric pressure air using water as a cathode, J. Phys. D: Appl. Phys., 26, 2184, 10.1088/0022-3727/26/12/015

Mezei, 1997, Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum, J. Anal. At. Spectrom., 12, 1203, 10.1039/A608528H

Eijkel, 2000, An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector, J. Anal. At. Spectrom., 15, 297, 10.1039/a909238b

Eijkel, 2000, A dc microplasma on a chip employed as an optical emission detector for gas chromatography, Anal. Chem., 72, 2547, 10.1021/ac991380d

Liang, 1989, Atmospheric pressure capactively coupled plasma spectral lamp and source for the direct analysis of conducting solid samples, Spectrochim. Acta Part B, 44, 1049, 10.1016/0584-8547(89)80104-1

Guevremont, 2000, Atmospheric pressure helium rf plasma source for atomic and molecular mass spectrometry, J. Anal. At. Spectrom., 15, 37, 10.1039/a903914g

Anghel, 1999, Atmospheric pressure capacitively coupled plasma source for the direct analysis of non-conducting solid samples, J. Anal. At. Spectrom., 14, 541, 10.1039/a807036i

Kanazawa, 1988, Stable glow plasma at atmospheric pressure, J. Phys. D: Appl. Phys., 21, 838, 10.1088/0022-3727/21/5/028

Okazaki, 1993, Appearance of a stable glow discharge in air, oxygen and nitrogen at atmospheric pressure using a 50 Hz source, J. Phys. D: Appl. Phys., 26, 889, 10.1088/0022-3727/26/5/025

F. Lostak, E. Dekempeneer, private communication.

Massines, 1998, Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier, J. Appl. Phys., 83, 2950, 10.1063/1.367051

Kanazawa, 1989, Glow plasma treatment at atmospheric pressure for surface modification and film deposition’, Nuclear Instrum. Methods Phys. Res., B37–38, 842, 10.1016/0168-583X(89)90310-8

Yokoyama, 1990, The mechanism of the stabilization of glow plasma at atmospheric pressure, J. Phys. D: Appl. Phys., 23, 1125, 10.1088/0022-3727/23/8/021

Reece Roth, 1995

Roth, 2000, A remote exposure reactor for plasma processing and sterilization by plasma active species at one atmosphere, IEEE Trans. Plasma Sci., 28, 56, 10.1109/27.842864

Laroussi, 1999, Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure, IEEE Trans. Plasma Sci., 27, 34, 10.1109/27.763016

Sawada, 1995, Synthesis of plasma-polymerized tetra-ethoxylane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge, J. Phys. D: Appl. Phys., 28, 1661, 10.1088/0022-3727/28/8/015

Goossens, 2001, Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation, Surf. Coat. Technol., 142–144, 474, 10.1016/S0257-8972(01)01140-9

Kogoma, 1994, Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure, J. Phys. D: Appl. Phys., 27, 1985, 10.1088/0022-3727/27/9/026

Kogelschatz, 1999, From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges, Pure Appl. Chem., 71, 1819, 10.1351/pac199971101819

Gibalov, 2000, The development of dielectric barrier discharges in gas gaps and on surfaces, J. Phys. D: Appl. Phys., 33, 2618, 10.1088/0022-3727/33/20/315

Eliasson, 1991, Modelling and application of silent discharge plasmas, IEEE Trans. Plasma Sci., 19, 309, 10.1109/27.106829

Braun, 1991, Microdischarges in air-fed ozonizers, J. Phys. D: Appl. Phys., 24, 564, 10.1088/0022-3727/24/4/007

Müller, 1996, On various kinds of dielectric barrier discharges, Contrib. Plasma Phys., 36, 697, 10.1002/ctpp.2150360606

Siemens, 1857, Poggendorfs Ann. Phys. Chem., 102, 66, 10.1002/andp.18571780905

Eliasson, 1987, Ozone synthesis from oxygen in dielectric barrier discharges, J. Phys. D: Appl. Phys., 20, 1421, 10.1088/0022-3727/20/11/010

Gibalov, 1994, Synthesis of ozone in barrier discharges, Russ. J. Phys. Chem., 68, 1029

Miclea, 2001, The dielectric barrier discharge — a powerful microchip plasma for diode laser spectrometry, Spectrochim. Acta Part B, 56, 37, 10.1016/S0584-8547(00)00286-X

Loeb, 1965

Akishev, 2001, The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air, J. Phys. D: Appl. Phys., 34, 2875, 10.1088/0022-3727/34/18/322

Cernak, 1998, Streamer mechanism for negative corona current pulses, J. Appl. Phys., 83, 2678, 10.1063/1.367422

Morrow, 1997, The theory of positive glow corona, J. Phys. D: Appl. Phys., 30, 3099, 10.1088/0022-3727/30/22/008

Yeom, 1989, Cylindrical magnetron discharges. I. Current–voltage characteristics for dc and rf driven discharge sources, J. Appl. Phys., 65, 3816, 10.1063/1.343395

Window, 1986, Charged particle fluxes from planar magnetron sputtering sources, J. Vac. Sci. Technol., A4, 196, 10.1116/1.573470

Pekker, 2000, On the theory of low-pressure magnetron glow discharges, Phys. Plasmas, 7, 382, 10.1063/1.873807

H.A. McKelvey, Magnetron cathode sputtering apparatus, US Patent #4,356,073 (1982).

Wright, 1986, Design advances and applications of the rotatable cylindrical magnetron, J. Vac. Sci. Technol., A4, 388, 10.1116/1.573888

De Bosscher, 2000, Advances in magnetron sputter sources, Belgian Vacuum Soc. News, 16, 6

Lieberman, 1994, Design of high density plasma sources for materials processing, 1, 10.1016/B978-0-08-092513-4.50006-4

Lieberman, 1999, Plasma discharges for materials processing and display applications, 1

Wilhelm, 1999, ECR plasmas for thin-film deposition, 111

Asmussen, 1989, Electron cyclotron resonance microwave discharges for etching and thin-film deposition, J. Vac. Sci. Technol., A7, 883, 10.1116/1.575815

Wilhelm, 1993, ECR plasma sources, 10.1007/978-1-4899-1130-8_11

Hopwood, 1992, Review of inductively coupled plasmas for plasma processing, Plasma Sources Sci. Technol., 1, 109, 10.1088/0963-0252/1/2/006

Montaser, 1998

Waggoner, 1998, Novel low power/reduced pressure inductively coupled plasma ionization source for mass spectrometric detection of organotin species, J. Anal. At. Spectrom., 13, 879, 10.1039/a802222d

Jonkers, 1998

Lister, 1999, Electrodeless gas discharges for lighting, 65

Timmermans, 1999

1993

Beenakker, 1976, A cavity for microwave induced plasmas operated in helium and argon at atmospheric pressure, Spectrochim. Acta Part B, 31, 483, 10.1016/0584-8547(76)80047-X

Beenakker, 1978, An assessment of a microwave induced plasma generated in argon with a cylindrical TM010 cavity as an excitation source for emission spectrometric analysis of solutions, Spectrochim. Acta Part B, 33, 373, 10.1016/0584-8547(78)80015-9

Moisan, 1994, An atmospheric pressure waveguide-fed microwave plasma torch: the TIA design, Plasma Sources Sci. Technol., 3, 584, 10.1088/0963-0252/3/4/016

Jonkers, 1996, On the atomic state densities of plasmas produced by the ‘torche à injection axiale’, Spectrochim. Acta Part B, 51, 457, 10.1016/0584-8547(95)01450-0

Jonkers, 1996, On the electron temperatures and densities in plasmas produced by the ‘torche à injection axiale’, Spectrochim. Acta Part B, 51, 1385, 10.1016/0584-8547(96)01493-0

Jin, 1991, A microwave plasma torch assembly for atomic emission spectrometry, Spectrochim. Acta Part B, 46, 417, 10.1016/0584-8547(91)80039-6

Prokisch, 1999, Photographic plasma images and electron number density as well as electron temperature mappings of a plasma in a modified microwave plasma torch (MPT) measured by spatially resolved Thomson scattering, Spectrochim. Acta Part B, 54, 1253, 10.1016/S0584-8547(99)00074-9

Jonkers, 1997, Steep plasma gradients studied with spatially resolved Thomson scattering measurements, Plasma Sources Sci. Technol., 6, 533, 10.1088/0963-0252/6/4/011

Masamba, 1992, Temperature and electron density measurements in a helium/hydrogen capacitively coupled microwave plasma, Spectrochim. Acta Part B, 47, 481, 10.1016/0584-8547(92)80041-E

Seelig, 1998, Use of a capacitively coupled microwave plasma (CMP) with Ar, N2 and air as working gases for atomic spectrometric elemental determinations in aqueous solutions and oils, Fresenius J. Anal. Chem., 360, 161, 10.1007/s002160050668

Patel, 1987, Tubular electrode torch for capacitively coupled helium microwave plasma as a spectrochemical excitation source, Anal. Chem., 59, 2374, 10.1021/ac00146a012

Spenser, 1994, Investigations of halogen determination in a helium capacitively coupled microwave plasma atomic emission spectrometer, Appl. Spectrosc., 48, 643, 10.1366/0003702944924763

Bilgic, 2000, A low power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology, J. Anal. At. Spectrom., 15, 579, 10.1039/B001647K

Bilgic, 2000, A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry, Plasma Sources Sci. Technol., 9, 1, 10.1088/0963-0252/9/1/301

Moisan, 1999, The development and use of surface-wave sustained discharges for applications, 23

Boulos, 1994

Moisan, 1991, Plasma sources based on the propagation of electromagnetic surface waves, J. Phys. D: Appl. Phys., 24, 1025, 10.1088/0022-3727/24/7/001

Komachi, 1994, Electric field in surface-wave-produced plasmas, J. Vac. Sci. Technol., A12, 769, 10.1116/1.578821

Yoshida, 1992, Production of ions in open-ended region of coaxial-type microwave cavity, Rev. Sci. Instrum., 63, 2565, 10.1063/1.1142890

Gibson, 1997, Investigations of the 147 nm radiative efficiency of Xe surface wave discharges, J. Appl. Phys., 81, 1087, 10.1063/1.363851

Moutoulas, 1985, A high-frequency surface wave pumped He–Ne laser, Appl. Phys. Lett., 46, 323, 10.1063/1.95618

Hartz, 1998, Innovative surface wave plasma reactor technique for PFC abatement, Environ. Sci. Technol., 32, 682, 10.1021/es9706514

Borges, 1996, Very low-roughness diamond film deposition using a surface-wave-sustained plasma, J. Appl. Phys., 80, 6013, 10.1063/1.363600

Bounasri, 1995, Etch characterization of a large diameter ECR process reactor supplied by a surface-wave-sustained plasma source, J. Appl. Phys., 77, 4030, 10.1063/1.359484

Selby, 1987, Taming the surfatron, Spectrochim. Acta Part B, 42, 285, 10.1016/0584-8547(87)80070-8

van de Sanden, 1991

van de Sanden, 1994, The behavior of heavy particles in the expanding plasma jet in argon, Plasma Sources Sci. Technol., 3, 501, 10.1088/0963-0252/3/4/007

Gielen, 1996, Optical and mechanical properties of plasma-beam deposited amorphous hydrogenated carbon, J. Appl. Phys., 80, 5986, 10.1063/1.363567

van de Sanden, 1998, Plasma chemistry aspects of a-Si:H deposition using an expanding thermal plasma, J. Appl. Phys., 84, 2426, 10.1063/1.368977

de Graaf, 2000

Kroesen, 1999, Dusty plasmas: fundamental aspects and industrial applications, 175

Daugherty, 1995, Derivation and experimental verification of a particulate transport model for a glow discharge, J. Appl. Phys., 78, 2279, 10.1063/1.360145

Mannheimer, 2000, Theoretical overview of the large-area plasma processing system (LAPPS), Plasma Sources Sci. Technol., 9, 370, 10.1088/0963-0252/9/3/316

Marcus, 1993

Payling, 1997

Shohet, 1990, Plasma-aided manufacturing, Phys. Fluids, B2, 1474, 10.1063/1.859582

Konuma, 1992

1995

Hamers, 1998, Structural properties of a-Si:H related to ion energy distributions in VHF silane deposition plasmas, J. Non-Cryst. Solids, 226, 205, 10.1016/S0022-3093(98)00453-0

Hamers, 1998

Wilhelm, 1999, Deposition properties and applications of carbon-based coatings, 123

Angus, 1986, Carbon thin films, 89

Yang, 1997, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13% stable conversion efficiency, Appl. Phys. Lett., 70, 2975, 10.1063/1.118761

Lettington, 1992, Optical properties and applications of diamond-like carbon coatings, Diamond Relat. Mater., 1, 805, 10.1016/0925-9635(92)90104-V

Kimock, 1993, Commercial applications of ion beam deposited diamond-like carbon (DLC) coatings, Surf. Coat. Technol., 56, 273, 10.1016/0257-8972(93)90261-L

Lettington, 1993, Applications of diamond-like carbon thin films, Phil. Trans. Roy. Soc. London, A342, 287, 10.1098/rsta.1993.0022

Enke, 1989, Amorphous hydrogenated carbon (a-C:H) for optical, electrical and mechanical applications, Mater. Sci. Forum, 52/53, 559, 10.4028/www.scientific.net/MSF.52-53.559

Manos, 1989

Samukawa, 1996, Pulse-time modulated plasma discharge for highly selective, highly anisotropic and charge-free etching, Plasma Sources Sci. Technol., 5, 132, 10.1088/0963-0252/5/2/004

Matsunami, 1984, Energy dependence of the ion-induced sputtering yields of monoatomic solids, Atom. Data Nucl. Data Tables, 31, 1, 10.1016/0092-640X(84)90016-0

De Witte, 2001

Coburn, 1979, Ion- and electron-assisted gas-surface chemistry — an important effect in plasma etching, J. Appl. Phys., 50, 3189, 10.1063/1.326355

Brown, 1994, Metal ion implantation: conventional versus immersion, J. Vac. Sci. Technol., B12, 823, 10.1116/1.587353

Deb, 1994, Plasma ion implantation technology for broad industrial application, J. Vac. Sci. Technol., B12, 828, 10.1116/1.587354

Qin, 1994, Plasma immersion ion implantation doping experiments for microelectronics, J. Vac. Sci. Technol., B12, 962, 10.1116/1.587336

Conrad, 1987, Plasma source ion implantation technique for surface modification of materials, J. Appl. Phys., 62, 4591, 10.1063/1.339055

1990

Yasuda, 1985

1978

1979

1980

1990

Biederman, 1990, Plasma chemistry of polymers, 57

Abeywickrama, 1997, Fluorescent lamps, 194

Bakker, 2000

J.T.W. de Hair, L. Kastelein, Low-pressure mercury discharge lamp with color temperature adjustments, US patent #5677598 (1997).

Ravi, 2000, Variable color temperature fluorescence lamp, J. Appl. Phys., 87, 4107, 10.1063/1.373037

Chanin, 1978, Nonuniformities in glow discharges: cataphoresis

de Groot, 1986

J. Bethenod, Electromagnetic Apparatus, US Patent #2,030,957 (1936).

Netten, 1991

Jonkers, 1997, Absorption measurements on a low pressure, inductively coupled argon/mercury discharge for lighting purposes: 1. The gas temperature and argon metastable densities, J. Phys. D: Appl. Phys., 30, 1928, 10.1088/0022-3727/30/13/015

Wharmby, 1997, Electrodeless lamps, 216

Shinomiya, 1991, Development of the electrodeless fluorescent lamp, J. Illum. Eng. Soc., 20, 44, 10.1080/00994480.1991.10748921

D.J. Levy, S.M. Berman, Instantaneous and efficient surface wave excitation of low pressure gas or gases, US Patent #4 792 725 (1988).

J.M. Proud, R.K. Smith, Compact fluorescent light sources having metallized electrodes, US Patent #4 266 166 (1981).

Waymouth, 1993, Applications of microwave discharges to high power light sources, 10.1007/978-1-4899-1130-8_27

Weber, 1985, Plasma displays, 332

Sobel, 1991, Plasma displays, IEEE Trans. Plasma Sci., 19, 1032, 10.1109/27.125029

Hagelaar, 2000

Punset, 1998, Two-dimensional simulation of an alternating current matrix plasma display cell: cross-talk and other geometric effects, J. Appl. Phys., 83, 1884, 10.1063/1.366913

Buzak, 1990, 420

Wilson, 1987

Carman, 1994, A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser, IEEE J. Quant. Electron., 30, 1876, 10.1109/3.301652

Ainsworth, 1989, Laser systems for photodynamic therapy, 37

Knowles, 1993, Efficient high-power copper-vapor laser pumped Ti:Al2O3 laser, Opt. Lett., 18, 607, 10.1364/OL.18.000607

1996

Bridges, 2000, Ion lasers: the early years (invited paper), IEEE J. Selected Topics Quantum Electron., 6, 885, 10.1109/2944.902139

Fetzer, 1986, Model of cw argon ion lasers excited by low-energy electron beams, J. Appl. Phys., 60, 2739, 10.1063/1.337105

Ivanov, 1996

Little, 1999

Gerstenberger, 1980, Hollow cathode metal ion lasers, IEEE J. Quant. Electron., QE-16, 820, 10.1109/JQE.1980.1070578

Tobin, 1995, High-gain hollow-cathode metal ion lasers for the UV and VUV, IEEE J. Selected Topics Quantum Electron., 1, 805, 10.1109/2944.473662

Rozsa, 1980, Hollow cathode discharges for gas lasers, Z. Naturforsch., 35a, 649, 10.1515/zna-1980-0615

Carman, 1996, Kinetics modeling of a pulsed Cu–Ne discharge: potential for new ultraviolet laser transitions in CuII, Opt. Lett., 21, 872, 10.1364/OL.21.000872

Reich, 1995, CW radio-frequency excited white-light He–Cd+ laser, IEEE J. Quantum Electron., 31, 1902, 10.1109/3.469268

Mentel, 2000, High beam quality UV lasers for microelectronics, Proceedings XVth ESCAMPIG

Cenian, 1997, Improvement of self-regeneration of gas mixtures in a convection-cooled 1.2 kW CO2 laser, J. Phys. D: Appl. Phys., 30, 1103, 10.1088/0022-3727/30/7/006

Wang, 1986, Direct mass spectrometric diagnostics for a CO2 gas laser, J. Appl. Phys., 59, 1834, 10.1063/1.336408

Hammer, 1999, Applications of plasma technology in environmental techniques, Contrib. Plasma Phys., 39, 441, 10.1002/ctpp.2150390507

1997

Fauchais, 1997, Thermal plasmas, IEEE Trans. Plasma Sci., PS-25, 1258, 10.1109/27.650901

1996

1993

Kogelschatz, 1999

Hoeben, 1999, Gas phase corona discharges for oxidation of phenol in an aqueous solution, J. Phys. D: Appl. Phys., 32, L133, 10.1088/0022-3727/32/24/103

Dinelli, 1990, Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas, IEEE Trans. Ind. Appl., 26, 535, 10.1109/28.55956

Prieto, 1997, Decomposition of carbon tetrachloride by a packed bed plasma reactor, J. Adv. Oxid. Technol., 2, 330

Penetrante, 1997, Comparison of pulsed corona and electron beam processing of hazardous air pollutants, J. Adv. Oxid. Technol., 2, 299

Park, 1999, Simultaneous removal of NOx and SO2 from NO–SO2–CO2–N2–O2 gas mixtures by corona radical shower systems, J. Phys. D: Appl. Phys., 32, 1006, 10.1088/0022-3727/32/9/311

Krasnoperov, 1997, Study of volatile organic compounds destruction by dielectric barrier corona discharge, J. Adv. Oxid. Technol., 2, 248

Malik, 2001, Water purification by electrical discharges, Plasma Sources Sci. Technol., 10, 82, 10.1088/0963-0252/10/1/311

De Jong, 1998, Review: effect of pulsed electrical fields on the quality of food products, Milchwissenschaft, 53, 4

Willberg, 1996, Degradation of 4-chlorophenol, 3,4-dichloroaniline and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor, Environ. Sci. Technol., 30, 2526, 10.1021/es950850s

Arno, 1995, Detoxication of trichloroethylene in a low-pressure wave plasma, Environ. Sci. Technol., 29, 1961, 10.1021/es00008a013

Laroussi, 1996, Sterilization of contaminated matter with an atmospheric pressure plasma, IEEE Trans. Plasma Sci., 24, 1188, 10.1109/27.533129

Kelly-Winterberg, 1998, Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma, J. Industr. Microbiol. Biotechnol., 20, 69, 10.1038/sj.jim.2900482

Kelly-Winterberg, 1999, Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms, J. Vac. Sci. Technol., 17, 1539, 10.1116/1.581849

Pomathiod, 1988, Design and characteristics of SIPPI, an ion source for a long-distance SIMS analysis of the Phobos surface, Rev. Sci. Instrum., 59, 2409, 10.1063/1.1139919

Hajlaoui, 1991, Characteristics of a surfatron driven ion source, Rev. Sci. Instrum., 62, 2671, 10.1063/1.1142198

Managadze, 1993, Exotic instruments and applications of laser ionization mass spectrometry in space research

Bannister, 1994, Metastable argon beam source using a surface wave sustained plasma, J. Vac. Sci. Technol., A12, 106, 10.1116/1.578903

Ricard, 1990, Active species in microwave postdischarge for steel-surface nitriding, IEEE Trans. Plasma Sci., 18, 940, 10.1109/27.61507

Mérel, 1997, The influence of atomic nitrogen flux on the composition of carbon nitride thin films, Appl. Phys. Lett., 71, 3814, 10.1063/1.120513