Gas discharge plasmas and their applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lieberman, 1994
Fiala, 1994, Two-dimensional hybrid model of low-pressure glow discharges, Phys. Rev. E, 49, 5607, 10.1103/PhysRevE.49.5607
Chapman, 1980
Grill, 1994
Bogaerts, 2002, Comparison of modeling calculations with experimental results for rf glow discharge optical emission spectrometry, Spectrochim. Acta Part B, 57, 109, 10.1016/S0584-8547(01)00357-3
Surendra, 1990, Electron heating in low pressure rf glow discharges, Appl. Phys. Lett., 56, 1022, 10.1063/1.102604
Levitskii, 1957, An investigation of the sparking potential of a HF discharge in a gas in the transition range of frequencies and pressures, Sov. Phys.- Tech. Phys., 2, 887
Godyak, 1986, Ion bombardment secondary electron maintenance of steady rf discharges, IEEE Trans. Plasma Sci., PS-14, 112, 10.1109/TPS.1986.4316513
Vidaud, 1988, Alpha and gamma rf capacitive discharges at intermediate pressures, J. Phys. D: Appl. Phys., 21, 57, 10.1088/0022-3727/21/1/009
Belenguer, 1990, Transition between different regimes of rf glow discharges, Phys. Rev. A, 41, 4447, 10.1103/PhysRevA.41.4447
Godyak, 1992, Evolution of the electron energy distribution function during rf discharge transition to the high voltage mode, Phys. Rev. Lett., 68, 40, 10.1103/PhysRevLett.68.40
Odrobina, 1996, Discontinuous transitions between alpha and gamma regimes of rf capacitive discharge, Plasma Sources Sci. Technol., 5, 517, 10.1088/0963-0252/5/3/020
Conrads, 2000, Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, 441, 10.1088/0963-0252/9/4/301
Walden, 1996, Microsecond-pulse glow discharge atomic emission, Fresenius J. Anal. Chem., 355, 442, 10.1007/s0021663550442
Oxley, 2000, Quantitative depth analysis using microsecond pulsed glow discharge atomic emission spectrometry, J. Anal. At. Spectrom., 15, 1241, 10.1039/b001969k
Guiberteau, 1997, Modelling the pulsed glow discharge of a nitriding reactor, Surf. Coat. Technol., 97, 552, 10.1016/S0257-8972(97)00188-6
Beer, 1999, Dynamics of a pulsed DC discharge used for plasma-assisted chemical vapor deposition: a case study for titanium nitride deposition, Surf. Coat. Technol., 120, 331, 10.1016/S0257-8972(99)00486-7
Francis, 1956, The glow discharge at low pressure
Raizer, 1991
Schoenbach, 1997, High-pressure hollow cathode discharges, Plasmas Sources Sci. Technol., 6, 468, 10.1088/0963-0252/6/4/003
Stark, 1999, Direct current high-pressure glow discharges, J. Appl. Phys., 85, 2075, 10.1063/1.369505
Stark, 1999, Direct current glow discharges in atmospheric air, Appl. Phys. Lett., 74, 3770, 10.1063/1.124174
Czerfalvi, 1993, Emission studies on a glow discharge in atmospheric pressure air using water as a cathode, J. Phys. D: Appl. Phys., 26, 2184, 10.1088/0022-3727/26/12/015
Mezei, 1997, Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum, J. Anal. At. Spectrom., 12, 1203, 10.1039/A608528H
Eijkel, 2000, An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector, J. Anal. At. Spectrom., 15, 297, 10.1039/a909238b
Eijkel, 2000, A dc microplasma on a chip employed as an optical emission detector for gas chromatography, Anal. Chem., 72, 2547, 10.1021/ac991380d
Liang, 1989, Atmospheric pressure capactively coupled plasma spectral lamp and source for the direct analysis of conducting solid samples, Spectrochim. Acta Part B, 44, 1049, 10.1016/0584-8547(89)80104-1
Guevremont, 2000, Atmospheric pressure helium rf plasma source for atomic and molecular mass spectrometry, J. Anal. At. Spectrom., 15, 37, 10.1039/a903914g
Anghel, 1999, Atmospheric pressure capacitively coupled plasma source for the direct analysis of non-conducting solid samples, J. Anal. At. Spectrom., 14, 541, 10.1039/a807036i
Kanazawa, 1988, Stable glow plasma at atmospheric pressure, J. Phys. D: Appl. Phys., 21, 838, 10.1088/0022-3727/21/5/028
Okazaki, 1993, Appearance of a stable glow discharge in air, oxygen and nitrogen at atmospheric pressure using a 50 Hz source, J. Phys. D: Appl. Phys., 26, 889, 10.1088/0022-3727/26/5/025
F. Lostak, E. Dekempeneer, private communication.
Massines, 1998, Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier, J. Appl. Phys., 83, 2950, 10.1063/1.367051
Kanazawa, 1989, Glow plasma treatment at atmospheric pressure for surface modification and film deposition’, Nuclear Instrum. Methods Phys. Res., B37–38, 842, 10.1016/0168-583X(89)90310-8
Yokoyama, 1990, The mechanism of the stabilization of glow plasma at atmospheric pressure, J. Phys. D: Appl. Phys., 23, 1125, 10.1088/0022-3727/23/8/021
Reece Roth, 1995
Roth, 2000, A remote exposure reactor for plasma processing and sterilization by plasma active species at one atmosphere, IEEE Trans. Plasma Sci., 28, 56, 10.1109/27.842864
Laroussi, 1999, Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure, IEEE Trans. Plasma Sci., 27, 34, 10.1109/27.763016
Sawada, 1995, Synthesis of plasma-polymerized tetra-ethoxylane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge, J. Phys. D: Appl. Phys., 28, 1661, 10.1088/0022-3727/28/8/015
Goossens, 2001, Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation, Surf. Coat. Technol., 142–144, 474, 10.1016/S0257-8972(01)01140-9
Kogoma, 1994, Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure, J. Phys. D: Appl. Phys., 27, 1985, 10.1088/0022-3727/27/9/026
Kogelschatz, 1999, From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges, Pure Appl. Chem., 71, 1819, 10.1351/pac199971101819
Gibalov, 2000, The development of dielectric barrier discharges in gas gaps and on surfaces, J. Phys. D: Appl. Phys., 33, 2618, 10.1088/0022-3727/33/20/315
Eliasson, 1991, Modelling and application of silent discharge plasmas, IEEE Trans. Plasma Sci., 19, 309, 10.1109/27.106829
Braun, 1991, Microdischarges in air-fed ozonizers, J. Phys. D: Appl. Phys., 24, 564, 10.1088/0022-3727/24/4/007
Müller, 1996, On various kinds of dielectric barrier discharges, Contrib. Plasma Phys., 36, 697, 10.1002/ctpp.2150360606
Eliasson, 1987, Ozone synthesis from oxygen in dielectric barrier discharges, J. Phys. D: Appl. Phys., 20, 1421, 10.1088/0022-3727/20/11/010
Gibalov, 1994, Synthesis of ozone in barrier discharges, Russ. J. Phys. Chem., 68, 1029
Miclea, 2001, The dielectric barrier discharge — a powerful microchip plasma for diode laser spectrometry, Spectrochim. Acta Part B, 56, 37, 10.1016/S0584-8547(00)00286-X
Loeb, 1965
Akishev, 2001, The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air, J. Phys. D: Appl. Phys., 34, 2875, 10.1088/0022-3727/34/18/322
Cernak, 1998, Streamer mechanism for negative corona current pulses, J. Appl. Phys., 83, 2678, 10.1063/1.367422
Morrow, 1997, The theory of positive glow corona, J. Phys. D: Appl. Phys., 30, 3099, 10.1088/0022-3727/30/22/008
Yeom, 1989, Cylindrical magnetron discharges. I. Current–voltage characteristics for dc and rf driven discharge sources, J. Appl. Phys., 65, 3816, 10.1063/1.343395
Window, 1986, Charged particle fluxes from planar magnetron sputtering sources, J. Vac. Sci. Technol., A4, 196, 10.1116/1.573470
Pekker, 2000, On the theory of low-pressure magnetron glow discharges, Phys. Plasmas, 7, 382, 10.1063/1.873807
H.A. McKelvey, Magnetron cathode sputtering apparatus, US Patent #4,356,073 (1982).
Wright, 1986, Design advances and applications of the rotatable cylindrical magnetron, J. Vac. Sci. Technol., A4, 388, 10.1116/1.573888
De Bosscher, 2000, Advances in magnetron sputter sources, Belgian Vacuum Soc. News, 16, 6
Lieberman, 1994, Design of high density plasma sources for materials processing, 1, 10.1016/B978-0-08-092513-4.50006-4
Lieberman, 1999, Plasma discharges for materials processing and display applications, 1
Wilhelm, 1999, ECR plasmas for thin-film deposition, 111
Asmussen, 1989, Electron cyclotron resonance microwave discharges for etching and thin-film deposition, J. Vac. Sci. Technol., A7, 883, 10.1116/1.575815
Hopwood, 1992, Review of inductively coupled plasmas for plasma processing, Plasma Sources Sci. Technol., 1, 109, 10.1088/0963-0252/1/2/006
Montaser, 1998
Waggoner, 1998, Novel low power/reduced pressure inductively coupled plasma ionization source for mass spectrometric detection of organotin species, J. Anal. At. Spectrom., 13, 879, 10.1039/a802222d
Jonkers, 1998
Lister, 1999, Electrodeless gas discharges for lighting, 65
Timmermans, 1999
1993
Beenakker, 1976, A cavity for microwave induced plasmas operated in helium and argon at atmospheric pressure, Spectrochim. Acta Part B, 31, 483, 10.1016/0584-8547(76)80047-X
Beenakker, 1978, An assessment of a microwave induced plasma generated in argon with a cylindrical TM010 cavity as an excitation source for emission spectrometric analysis of solutions, Spectrochim. Acta Part B, 33, 373, 10.1016/0584-8547(78)80015-9
Moisan, 1994, An atmospheric pressure waveguide-fed microwave plasma torch: the TIA design, Plasma Sources Sci. Technol., 3, 584, 10.1088/0963-0252/3/4/016
Jonkers, 1996, On the atomic state densities of plasmas produced by the ‘torche à injection axiale’, Spectrochim. Acta Part B, 51, 457, 10.1016/0584-8547(95)01450-0
Jonkers, 1996, On the electron temperatures and densities in plasmas produced by the ‘torche à injection axiale’, Spectrochim. Acta Part B, 51, 1385, 10.1016/0584-8547(96)01493-0
Jin, 1991, A microwave plasma torch assembly for atomic emission spectrometry, Spectrochim. Acta Part B, 46, 417, 10.1016/0584-8547(91)80039-6
Prokisch, 1999, Photographic plasma images and electron number density as well as electron temperature mappings of a plasma in a modified microwave plasma torch (MPT) measured by spatially resolved Thomson scattering, Spectrochim. Acta Part B, 54, 1253, 10.1016/S0584-8547(99)00074-9
Jonkers, 1997, Steep plasma gradients studied with spatially resolved Thomson scattering measurements, Plasma Sources Sci. Technol., 6, 533, 10.1088/0963-0252/6/4/011
Masamba, 1992, Temperature and electron density measurements in a helium/hydrogen capacitively coupled microwave plasma, Spectrochim. Acta Part B, 47, 481, 10.1016/0584-8547(92)80041-E
Seelig, 1998, Use of a capacitively coupled microwave plasma (CMP) with Ar, N2 and air as working gases for atomic spectrometric elemental determinations in aqueous solutions and oils, Fresenius J. Anal. Chem., 360, 161, 10.1007/s002160050668
Patel, 1987, Tubular electrode torch for capacitively coupled helium microwave plasma as a spectrochemical excitation source, Anal. Chem., 59, 2374, 10.1021/ac00146a012
Spenser, 1994, Investigations of halogen determination in a helium capacitively coupled microwave plasma atomic emission spectrometer, Appl. Spectrosc., 48, 643, 10.1366/0003702944924763
Bilgic, 2000, A low power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology, J. Anal. At. Spectrom., 15, 579, 10.1039/B001647K
Bilgic, 2000, A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry, Plasma Sources Sci. Technol., 9, 1, 10.1088/0963-0252/9/1/301
Moisan, 1999, The development and use of surface-wave sustained discharges for applications, 23
Boulos, 1994
Moisan, 1991, Plasma sources based on the propagation of electromagnetic surface waves, J. Phys. D: Appl. Phys., 24, 1025, 10.1088/0022-3727/24/7/001
Komachi, 1994, Electric field in surface-wave-produced plasmas, J. Vac. Sci. Technol., A12, 769, 10.1116/1.578821
Yoshida, 1992, Production of ions in open-ended region of coaxial-type microwave cavity, Rev. Sci. Instrum., 63, 2565, 10.1063/1.1142890
Gibson, 1997, Investigations of the 147 nm radiative efficiency of Xe surface wave discharges, J. Appl. Phys., 81, 1087, 10.1063/1.363851
Moutoulas, 1985, A high-frequency surface wave pumped He–Ne laser, Appl. Phys. Lett., 46, 323, 10.1063/1.95618
Hartz, 1998, Innovative surface wave plasma reactor technique for PFC abatement, Environ. Sci. Technol., 32, 682, 10.1021/es9706514
Borges, 1996, Very low-roughness diamond film deposition using a surface-wave-sustained plasma, J. Appl. Phys., 80, 6013, 10.1063/1.363600
Bounasri, 1995, Etch characterization of a large diameter ECR process reactor supplied by a surface-wave-sustained plasma source, J. Appl. Phys., 77, 4030, 10.1063/1.359484
van de Sanden, 1991
van de Sanden, 1994, The behavior of heavy particles in the expanding plasma jet in argon, Plasma Sources Sci. Technol., 3, 501, 10.1088/0963-0252/3/4/007
Gielen, 1996, Optical and mechanical properties of plasma-beam deposited amorphous hydrogenated carbon, J. Appl. Phys., 80, 5986, 10.1063/1.363567
van de Sanden, 1998, Plasma chemistry aspects of a-Si:H deposition using an expanding thermal plasma, J. Appl. Phys., 84, 2426, 10.1063/1.368977
de Graaf, 2000
Kroesen, 1999, Dusty plasmas: fundamental aspects and industrial applications, 175
Daugherty, 1995, Derivation and experimental verification of a particulate transport model for a glow discharge, J. Appl. Phys., 78, 2279, 10.1063/1.360145
Mannheimer, 2000, Theoretical overview of the large-area plasma processing system (LAPPS), Plasma Sources Sci. Technol., 9, 370, 10.1088/0963-0252/9/3/316
Marcus, 1993
Payling, 1997
Konuma, 1992
1995
Hamers, 1998, Structural properties of a-Si:H related to ion energy distributions in VHF silane deposition plasmas, J. Non-Cryst. Solids, 226, 205, 10.1016/S0022-3093(98)00453-0
Hamers, 1998
Wilhelm, 1999, Deposition properties and applications of carbon-based coatings, 123
Angus, 1986, Carbon thin films, 89
Yang, 1997, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13% stable conversion efficiency, Appl. Phys. Lett., 70, 2975, 10.1063/1.118761
Lettington, 1992, Optical properties and applications of diamond-like carbon coatings, Diamond Relat. Mater., 1, 805, 10.1016/0925-9635(92)90104-V
Kimock, 1993, Commercial applications of ion beam deposited diamond-like carbon (DLC) coatings, Surf. Coat. Technol., 56, 273, 10.1016/0257-8972(93)90261-L
Lettington, 1993, Applications of diamond-like carbon thin films, Phil. Trans. Roy. Soc. London, A342, 287, 10.1098/rsta.1993.0022
Enke, 1989, Amorphous hydrogenated carbon (a-C:H) for optical, electrical and mechanical applications, Mater. Sci. Forum, 52/53, 559, 10.4028/www.scientific.net/MSF.52-53.559
Manos, 1989
Samukawa, 1996, Pulse-time modulated plasma discharge for highly selective, highly anisotropic and charge-free etching, Plasma Sources Sci. Technol., 5, 132, 10.1088/0963-0252/5/2/004
Matsunami, 1984, Energy dependence of the ion-induced sputtering yields of monoatomic solids, Atom. Data Nucl. Data Tables, 31, 1, 10.1016/0092-640X(84)90016-0
De Witte, 2001
Coburn, 1979, Ion- and electron-assisted gas-surface chemistry — an important effect in plasma etching, J. Appl. Phys., 50, 3189, 10.1063/1.326355
Brown, 1994, Metal ion implantation: conventional versus immersion, J. Vac. Sci. Technol., B12, 823, 10.1116/1.587353
Deb, 1994, Plasma ion implantation technology for broad industrial application, J. Vac. Sci. Technol., B12, 828, 10.1116/1.587354
Qin, 1994, Plasma immersion ion implantation doping experiments for microelectronics, J. Vac. Sci. Technol., B12, 962, 10.1116/1.587336
Conrad, 1987, Plasma source ion implantation technique for surface modification of materials, J. Appl. Phys., 62, 4591, 10.1063/1.339055
1990
Yasuda, 1985
1978
1979
1980
1990
Biederman, 1990, Plasma chemistry of polymers, 57
Abeywickrama, 1997, Fluorescent lamps, 194
Bakker, 2000
J.T.W. de Hair, L. Kastelein, Low-pressure mercury discharge lamp with color temperature adjustments, US patent #5677598 (1997).
Ravi, 2000, Variable color temperature fluorescence lamp, J. Appl. Phys., 87, 4107, 10.1063/1.373037
Chanin, 1978, Nonuniformities in glow discharges: cataphoresis
de Groot, 1986
J. Bethenod, Electromagnetic Apparatus, US Patent #2,030,957 (1936).
Netten, 1991
Jonkers, 1997, Absorption measurements on a low pressure, inductively coupled argon/mercury discharge for lighting purposes: 1. The gas temperature and argon metastable densities, J. Phys. D: Appl. Phys., 30, 1928, 10.1088/0022-3727/30/13/015
Wharmby, 1997, Electrodeless lamps, 216
Shinomiya, 1991, Development of the electrodeless fluorescent lamp, J. Illum. Eng. Soc., 20, 44, 10.1080/00994480.1991.10748921
D.J. Levy, S.M. Berman, Instantaneous and efficient surface wave excitation of low pressure gas or gases, US Patent #4 792 725 (1988).
J.M. Proud, R.K. Smith, Compact fluorescent light sources having metallized electrodes, US Patent #4 266 166 (1981).
Waymouth, 1993, Applications of microwave discharges to high power light sources, 10.1007/978-1-4899-1130-8_27
Weber, 1985, Plasma displays, 332
Hagelaar, 2000
Punset, 1998, Two-dimensional simulation of an alternating current matrix plasma display cell: cross-talk and other geometric effects, J. Appl. Phys., 83, 1884, 10.1063/1.366913
Buzak, 1990, 420
Wilson, 1987
Carman, 1994, A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser, IEEE J. Quant. Electron., 30, 1876, 10.1109/3.301652
Ainsworth, 1989, Laser systems for photodynamic therapy, 37
Knowles, 1993, Efficient high-power copper-vapor laser pumped Ti:Al2O3 laser, Opt. Lett., 18, 607, 10.1364/OL.18.000607
1996
Bridges, 2000, Ion lasers: the early years (invited paper), IEEE J. Selected Topics Quantum Electron., 6, 885, 10.1109/2944.902139
Fetzer, 1986, Model of cw argon ion lasers excited by low-energy electron beams, J. Appl. Phys., 60, 2739, 10.1063/1.337105
Ivanov, 1996
Little, 1999
Gerstenberger, 1980, Hollow cathode metal ion lasers, IEEE J. Quant. Electron., QE-16, 820, 10.1109/JQE.1980.1070578
Tobin, 1995, High-gain hollow-cathode metal ion lasers for the UV and VUV, IEEE J. Selected Topics Quantum Electron., 1, 805, 10.1109/2944.473662
Rozsa, 1980, Hollow cathode discharges for gas lasers, Z. Naturforsch., 35a, 649, 10.1515/zna-1980-0615
Carman, 1996, Kinetics modeling of a pulsed Cu–Ne discharge: potential for new ultraviolet laser transitions in CuII, Opt. Lett., 21, 872, 10.1364/OL.21.000872
Reich, 1995, CW radio-frequency excited white-light He–Cd+ laser, IEEE J. Quantum Electron., 31, 1902, 10.1109/3.469268
Mentel, 2000, High beam quality UV lasers for microelectronics, Proceedings XVth ESCAMPIG
Cenian, 1997, Improvement of self-regeneration of gas mixtures in a convection-cooled 1.2 kW CO2 laser, J. Phys. D: Appl. Phys., 30, 1103, 10.1088/0022-3727/30/7/006
Wang, 1986, Direct mass spectrometric diagnostics for a CO2 gas laser, J. Appl. Phys., 59, 1834, 10.1063/1.336408
Hammer, 1999, Applications of plasma technology in environmental techniques, Contrib. Plasma Phys., 39, 441, 10.1002/ctpp.2150390507
1997
1996
1993
Kogelschatz, 1999
Hoeben, 1999, Gas phase corona discharges for oxidation of phenol in an aqueous solution, J. Phys. D: Appl. Phys., 32, L133, 10.1088/0022-3727/32/24/103
Dinelli, 1990, Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas, IEEE Trans. Ind. Appl., 26, 535, 10.1109/28.55956
Prieto, 1997, Decomposition of carbon tetrachloride by a packed bed plasma reactor, J. Adv. Oxid. Technol., 2, 330
Penetrante, 1997, Comparison of pulsed corona and electron beam processing of hazardous air pollutants, J. Adv. Oxid. Technol., 2, 299
Park, 1999, Simultaneous removal of NOx and SO2 from NO–SO2–CO2–N2–O2 gas mixtures by corona radical shower systems, J. Phys. D: Appl. Phys., 32, 1006, 10.1088/0022-3727/32/9/311
Krasnoperov, 1997, Study of volatile organic compounds destruction by dielectric barrier corona discharge, J. Adv. Oxid. Technol., 2, 248
Malik, 2001, Water purification by electrical discharges, Plasma Sources Sci. Technol., 10, 82, 10.1088/0963-0252/10/1/311
De Jong, 1998, Review: effect of pulsed electrical fields on the quality of food products, Milchwissenschaft, 53, 4
Willberg, 1996, Degradation of 4-chlorophenol, 3,4-dichloroaniline and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor, Environ. Sci. Technol., 30, 2526, 10.1021/es950850s
Arno, 1995, Detoxication of trichloroethylene in a low-pressure wave plasma, Environ. Sci. Technol., 29, 1961, 10.1021/es00008a013
Laroussi, 1996, Sterilization of contaminated matter with an atmospheric pressure plasma, IEEE Trans. Plasma Sci., 24, 1188, 10.1109/27.533129
Kelly-Winterberg, 1998, Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma, J. Industr. Microbiol. Biotechnol., 20, 69, 10.1038/sj.jim.2900482
Kelly-Winterberg, 1999, Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms, J. Vac. Sci. Technol., 17, 1539, 10.1116/1.581849
Pomathiod, 1988, Design and characteristics of SIPPI, an ion source for a long-distance SIMS analysis of the Phobos surface, Rev. Sci. Instrum., 59, 2409, 10.1063/1.1139919
Hajlaoui, 1991, Characteristics of a surfatron driven ion source, Rev. Sci. Instrum., 62, 2671, 10.1063/1.1142198
Managadze, 1993, Exotic instruments and applications of laser ionization mass spectrometry in space research
Bannister, 1994, Metastable argon beam source using a surface wave sustained plasma, J. Vac. Sci. Technol., A12, 106, 10.1116/1.578903
Ricard, 1990, Active species in microwave postdischarge for steel-surface nitriding, IEEE Trans. Plasma Sci., 18, 940, 10.1109/27.61507