Đốt nóng nhanh bằng phóng điện khí của gốm YSZ ở nhiệt độ phòng

Yuejin Zhu1, Hongyang Zhou1, Rongxia Huang2, Nianping Yan3, Xiaohao Wang1, Guanghua Liu4, Zhidong Jia1
1Engineering Laboratory of Power Equipment Reliability in Complicated Coastal Environments, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
2School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
3State Grade Jiangxi Electric Power Research Institute, Nanchang, 330000, China
4State Key Laboratory of New Ceramics and Fine Processing Tsinghua University, School of Materials Science and Technology, Tsinghua University, Beijing, 100084, China

Tóm tắt

Tóm tắtNghiên cứu này là nghiên cứu đầu tiên tiến hành quá trình đốt nóng nhanh (flash sintering) của gốm zirconia ổn định yttria (3YSZ) với nồng độ 3 mol% ở nhiệt độ phòng (25 °C) dưới một trường điện mạnh, lớn hơn 1 kV/cm. Tại áp suất khí quyển tiêu chuẩn (101 kPa), xác suất thành công của quá trình đốt nóng nhanh là khoảng một nửa so với ở áp suất khí quyển thấp, dưới 80 kPa. Sự thành công của quy trình đốt nóng nhanh được xác định dựa trên hiệu suất hồ quang điện cao tại các áp suất khí quyển khác nhau từ 20 đến 100 kPa. Các mẫu 3YSZ đạt được mật độ tương đối tối đa là 99,5% với kích thước hạt khoảng 200 nm. Kết quả cho thấy khi áp suất khí quyển giảm, trường điện khởi phát của quá trình đốt nóng nhanh cũng giảm, tương ứng với công thức thực nghiệm của điện áp phóng điện. Hơn nữa, quá trình đốt nóng nhanh được tìm thấy là được kích hoạt bởi phóng điện bề mặt của các mẫu gốm, và hồ quang điện trên bề mặt mẫu đã nổi lên trước khi quá trình đốt nóng nhanh hoàn tất ở áp suất quá cao, dẫn đến thất bại trong quá trình đốt nóng nhanh. Nghiên cứu này tiết lộ một phương pháp mới cho việc chuẩn bị gốm đốt nóng nhanh tại nhiệt độ phòng một cách dễ dàng, điều này sẽ thúc đẩy ứng dụng của quá trình đốt nóng nhanh trong ngành gốm sứ.

Từ khóa


Tài liệu tham khảo

Cologna M, Rashkova B, Raj R. Flash sintering of nanograin zirconia in < 5 s at 850 °C. J Am Ceram Soc 2010, 93: 3556–3559.

Prette ALG, Cologna M, Sglavo V, et al. Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sources 2011, 196: 2061–2065.

Biesuz M, Sglavo VM. Flash sintering of alumina: Effect of different operating conditions on densification. J Eur Ceram Soc 2016, 36: 2535–2542.

Zhang YY, Nie JY, Luo J. Effects of phase and doping on flash sintering of TiO2. J Ceram Soc Jpn 2016, 124: 296–300.

Shi RK, Pu YP, Wang W, et al. Flash sintering of barium titanate. Ceram Int 2019, 45: 7085–7089.

Cui B, Niu JP, Peng P, et al. Flash sintering preparation and electrical properties of ZnO-Bi2O3-M (M = Cr2O3, MnO2 or Co2O3) varistor ceramics. Ceram Int 2020, 46: 14913–14918.

Ren K, Liu JL, Wang YG. Flash sintering of yttria-stabilized zirconia: Fundamental understanding and applications. Scripta Mater 2020, 187: 371–378.

Peng P, Deng YJ, Niu JP, et al. Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors. J Adv Ceram 2020, 9: 683–692.

Zhou XB, Jing L, Kwon YD, et al. Fabrication of SiCw/Ti3SiC2 composites with improved thermal conductivity and mechanical properties using spark plasma sintering. J Adv Ceram 2020, 9: 462–470.

Carvalho SGM, Muccillo ENS, Muccillo R. AC electric field assisted pressureless sintering zirconia: 3 mol% yttria solid electrolyte. Phys Status Solidi A 2018, 215: 1700647.

Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance. J Adv Ceram 2020, 9: 232–242.

Fergus JW. Electrolytes for solid oxide fuel cells. J Power Sources 2006, 162: 30–40.

Xing BH, Cao CR, Zhao WM, et al. Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography. J Eur Ceram Soc 2020, 40: 1418–1423.

M’Peko JC, Francis JSC, Raj R. Impedance spectroscopy and dielectric properties of flash versus conventionally sintered yttria-doped zirconia electroceramics viewed at the microstructural level. J Am Ceram Soc 2013, 96: 3760–3767.

Christian KH, Charalambous H, Jha SK, et al. Current-ramp assisted sintering of 3YSZ: Electrochemical and microstructural comparison to flash and thermal sintering. J Eur Ceram Soc 2020, 40: 436–443.

Zhou HY, Li X, Zhu YC, et al. Review of flash sintering with strong electric field. High Volt 2022, https://doi.org/10.1049/hve2.12080.

Downs JA, Sglavo VM. Electric field assisted sintering of cubic zirconia at 390 °C. J Am Ceram Soc 2013, 96: 1342–1344.

Yadav D, Raj R. Two unique measurements related to flash experiments with yttria-stabilized zirconia. J Am Ceram Soc 2017, 100: 5374–5378.

Liu JM, Zhu YC, Wang XL, et al. Flash sintering of 8YSZ ceramics under AC fiel. In: Proceedings of the 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Richland, USA, 2019: 710–712.

Steil MC, Marinha D, Aman Y, et al. From conventional ac flash-sintering of YSZ to hyper-flash and double flash. J Eur Ceram Soc 2013, 33: 2093–2101.

Yang D, Conrad H. Enhanced sintering rate of zirconia (3Y-TZP) by application of a small AC electric field. Scripta Mater 2010, 63: 328–331.

Baraki R, Schwarz S, Guillon O. Effect of electrical field/current on sintering of fully stabilized zirconia. J Am Ceram Soc 2012, 95: 75–78.

Conrad H, Wang J. Equivalence of AC and DC electric field on retarding grain growth in yttria-stabilized zirconia. Scripta Mater 2014, 72–73: 33–34.

Muccillo R, Muccillo ENS. Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering. J Eur Ceram Soc 2014, 34: 3871–3877.

Qin W, Yun J, Thron AM, et al. Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia. Mater Manuf Process 2017, 32: 549–556.

Charalambous H, Jha SK, Okasinski J, et al. Spectral analysis and temperature measurement during flash sintering under AC electric field. Materialia 2019, 6: 100273.

Muccillo R, Kleitz M, Muccillo ENS. Flash grain welding in yttria stabilized zirconia. J Eur Ceram Soc 2011, 31: 1517–1521.

Chaim R. Relations between flash onset-, Debye-, and glass transition temperature in flash sintering of oxide nanoparticles. Scripta Mater 2019, 169: 6–8.

Biesuz M, Luchi P, Quaranta A, et al. Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in α-alumina. J Appl Phys 2016, 120: 145107.

Shi RK, Pu YP, Ji JM, et al. Correlation between flash sintering and dielectric breakdown behavior in donor-doped barium titanate ceramics. Ceram Int 2020, 46: 12846–12851.

Liu JM, Li X, Wang XL, et al. Alternating Current field flash sintering 99% relative density ZnO ceramics at room temperature. Scripta Mater 2020, 176: 28–31.

Liu JM, Huang RX, Zhang RB, et al. Mechanism of flash sintering with high electric field: In the view of electric discharge and breakdown. Scripta Mater 2020, 187: 93–96.

Liu DG, Cao YJ, Liu JL, et al. Effect of oxygen partial pressure on temperature for onset of flash sintering 3YSZ. J Eur Ceram Soc 2018, 38: 817–820.

Zhang YY, Luo J. Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of < 120 °C. Scripta Mater 2015, 106: 26–29.

Kawamura T, Ishii M, Akbar M, et al. Pressure dependence of DC breakdown of contaminated insulators. IEEE Trans Electr Insul 1982, EI-17: 39–45.

Rudakova VM, Tikhodeev NN. Influence of low air pressure on flashover voltages of polluted insulators: Test data, generalization attempts and some recommendations. IEEE Trans Power Deliv 1989, 4: 607–613.

Zhang CY, Wang LM, Guan ZC, et al. Pollution flashover performance of full-scale ±800 kV converter station post insulators at high altitude area. IEEE Trans Dielectr Electr Insul 2013, 20: 717–726.

Zhang YY, Jung JI, Luo J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater 2015, 94: 87–100.

Wang XL, Zhu YC, Huang RX, et al. Flash sintering of ZnO ceramics at 50 °C under an AC field. Ceram Int 2019, 45: 24909–24913.

Naik K, Jha SK, Raj R. Correlations between conductivity, electroluminescence and flash sintering. Scripta Mater 2016, 118: 1–4.

Zhang YY, Nie JY, Chan JM, et al. Probing the densification mechanisms during flash sintering of ZnO. Acta Mater 2017, 125: 465–475.

Todd RI, Zapata-Solvas E, Bonilla RS, et al. Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J Eur Ceram Soc 2015, 35: 1865–1877.

Lacey AA, Hewitt IJ, Todd RI. A mathematical model for flash sintering. Math Model Nat Phenom 2015, 10: 77–89.

Biesuz M, Sglavo VM. Flash sintering of ceramics. J Eur Ceram Soc 2019, 39: 115–143.

Zhang ZJ. Study on pollution flashover performance and DC discharge model of insulator (long) strings at low air pressure. Ph.D. Thesis. Chongqing, China: Chongqing University, 2007.

Sima WX, Tan W, Yang Q, et al. Long AC arc movement model for parallel gap lightning protection device with consideration of thermal buoyancy and magnetic force. Chin Soc Elec Eng 2011, 31: 138–145. (in Chinese)

Li YK. Study of the influence of altitude on the characteristics of the electrical arc on polluted ice surface. Ph.D. Thesis. Québec, Canada: University of Québec, 2002.

Saidi M, Abardeh RH. Air pressure dependence of natural-convection heat transfer. In: Proceedings of the World Congress on Engineering 2010, Vol II, London, 2010.

Wolten GM. Diffusionless phase transformations in zirconia and hafnia. J Am Ceram Soc 1963, 46: 418–422.

Andrievskaya ER, Kovylyaev VV, Lopato LM, et al. Liquidus surface of the ZrO2-Y2O3-Eu2O3 phase diagram. Powder Metall Met Ceram 2014, 53: 312–322.

Xie ZP, Xue WJ. Effect of Y2O3 contents and grain sizes on the mechanical properties and transformation of zirconia ceramics at cryogenic temperatures. Rare Metal Mat Eng 2013, 42: 256–259.