Gap-free compositions and gap-free samples of geometric random variables
Tài liệu tham khảo
Alon, 2000
Andrews, 1976
Bai, 1998, Normal approximations of the number of records in geometrically distributed random variables, Random Struct. Alg., 13, 319, 10.1002/(SICI)1098-2418(199810/12)13:3/4<319::AID-RSA7>3.0.CO;2-Y
Devroye, 1992, A limit theory for random skip lists, Ann. Appl. Probab., 2, 597, 10.1214/aoap/1177005651
Flajolet, 1985, Probabilistic counting algorithms for data base applications, J. Comput. System Sci., 31, 182, 10.1016/0022-0000(85)90041-8
Goh, 1992, Gap-free set partitions, Random Struct. Algorithms, 3, 9, 10.1002/rsa.3240030103
P.J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., to appear.
Hitczenko, 2004, Distinctness of compositions of an integer: a probabilistic analysis, Random Struct. Alg., 19, 407, 10.1002/rsa.10008
Hitczenko, 2005, On the multiplicity of parts in a random composition of a large integer, SIAM J. Discrete Math., 18, 418, 10.1137/S0895480199363155
Jacquet, 1998, Analytical de–Poissonization and its applications, Theoret. Comput. Sci., 201, 1, 10.1016/S0304-3975(97)00167-9
S. Janson, W. Szpankowski, Analysis of the asymmetric leader election algorithm, Electr. J. Combin. 4(1): research paper 17 (1997) 16pp.
P. Kirschenhofer, H. Prodinger, in: E. Hlawka, R.F. Tichy (Eds.), On the Analysis of Probabilistic Counting, Lecture Notes in Mathematics, vol. 1452, 1990, pp. 117–120.
Knopfmacher, 2001, Combinatorics of geometrically distributed random variables: value and position of the rth left-to-right maximum, Discrete Math., 226, 255, 10.1016/S0012-365X(00)00133-3
D. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.
Papadakis, 1992, Average search and update costs in skip lists, BIT, 32, 316, 10.1007/BF01994884
Prodinger, 1996, Combinatorics of geometrically distributed random variables, Discrete Math., 153, 253, 10.1016/0012-365X(95)00141-I
H. Prodinger, Combinatorics of geometrically distributed random variables: lengths of ascending runs, LATIN2000, Lecture Notes in Computer Science, vol. 1776, 2000, pp. 473–482.
Prodinger, 2001, Combinatorics of geometrically distributed random variables, Ann. Combin., 5, 141, 10.1007/s00026-001-8010-z
Pugh, 1990, Skip lists: a probabilistic alternative to balanced trees, Comm. ACM, 33, 668, 10.1145/78973.78977
Szpankowski, 2001