Gap Continuity of Multimaps

Set-Valued Analysis - Tập 16 - Trang 429-442 - 2007
Jean-Paul Penot1
1Faculté des Sciences, Université de Pau, Mathématiques UMR CNRS 5142, PAU Cedex, France

Tóm tắt

We introduce a notion of continuity for multimaps (or set-valued maps) which is mild. It encompasses both lower semicontinuity and upper semicontinuity. We give characterizations and we consider some permanence properties. This notion can be used for various purposes. In particular, it is used for continuity properties of subdifferentials and of value functions in parametrized optimization problems. We also prove an approximate selection theorem.

Tài liệu tham khảo

Amahroq, T., Penot, J.-P., Syam, A.: Subdifferentiation and minimization of the difference of two functions (2007) (to appear) Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Birkhäuser, Basel (1990) Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric optimization. Birkhäuser Verlag, Basel (1983) Beer, G.: Topologies on closed and closed convex sets. Mathematics and its Applications, vol. 268. Kluwer, Dordrecht (1993) Cellina, A.: A theorem on the approximation of set-valued mappings. Rend. Acad. Nac. Lincei 47, 429–433 (1969) Champion, T.: Duality gap in convex programming. Math. Programming 99(3A), 487–498 (2004) Combari, C., Laghdir, M., Thibault, L.: A note on subdifferentials of convex composite func tionals. Arch. Math. 67(3), 239–252 (1996) Combari, C., Laghdir, M., Thibault, L.: On subdifferential calculus for convex functions defined on locally convex spaces. Ann. Sci. Math. Qué. 23(1), 23–36 (1999) Correa, R., Hiriart-Urruty, J.-B., Penot, J.-P.: A note on connected set-valued mappings. Boll. Unione Mat. Ital. VI. Ser. C Anal. Funz. Appl. 5, 357–366 (1986) Gossez, J.-P.: A note on multivalued monotone operators. Mich. Math. J. 17, 347–350 (1970) Hiriart-Urruty, J.-B.: Gradients généralisés de fonctions composées. Applications. C. R. Acad. Sci. Paris Sér. A 285, 781–784 (1977) Holmes R.B.: Geometric functional analysis and its applications. Guaduate Texts in Mathematics, vol. 24. Springer Verlag, New York (1975) Lemaire, B.: Application of a subdifferential of a convex composite functional to optimal control in variational inequalities. In: Nondifferentiable Optimization: Motivations and Applications. Proceedings of the IIASA Workshop, Sopron/Hung. 1984. Lecture Notes in Economics and Mathematical Systems, vol. 255, pp. 103–117 (1985) Penot, J.-P.: Calmness and stability properties of marginal and performance functions. Numer. Funct. Anal. Optim. 25(3–4), 287–308 (2004) Phelps, R.: Convex functions, monotone operators and differentiability. Lecture Notes in Mathematics. Springer, Berlin (1989) Rockafellar, R.T., Wets R. J.-B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol 317. Springer, Berlin (2002) Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)