Gangliosides in acetylcholine receptor-rich membranes fromTorpedo marmorata andDiscopyge tschudii

Neurochemical Research - Tập 18 Số 5 - Trang 599-603 - 1993
Victor L. Marcheselli1, José L. Daniotti2, Agustina Vidal1, Hugo J. F. Maccioni2, Derek Marsh3, Francisco J. Barrantes1
1Instituto de Investigaciones Bioquímicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Sur, Bahía Blanca, Argentina
2Departamento de Quimica Biologica, Universidad Nacional de Cordoba, Cordoba, Argentina.
3Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hakomori, S.-I. 1981. Gycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50: 733?764.

Barrantes, F. J. 1989. The lipid environment of the nicotinic acetylcholine receptor in native and reconstitued membranes. Crit. Rev. Biochem. Mol. Biol. 24: 437?478.

Marsh, D., and Barrantes, F. J. 1978. Immobilized lipid in acetylcholine receptor-rich membranes fromTorpedo marmorata. Proc. Natl. Acad. Sci. U. S. A. 75: 4329?4333.

Rousselet, A., Devaux, P. F., and Wirtz, K. W. 1979. Free fatty acids and esters can be immobilzied by receptor rich membranes fromTorpedo marmorata but no phospholipid acyl chain. Biochem Biophys. Res. Commun. 90: 871?877.

McMamee, M. G., Ellena, J. F., and Dalziel, A. W. 1982. Lipid-protein interactions in membranes containing the acetylcholine receptor. Biophys. J. 37: 103?104.

Marsh, D., Watts, A., and Barrantes, F. J. 1981. Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes fromTorpedo marmorata. Biochim. Biophys. Acta 645: 97?101.

Ellena, J. F., Blazing, M. A., and McNamee, M. G. 1983. Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22: 5523?5535.

Bremer, E. G., Schlessinger, J., and Hakomori, S. I. 1986. Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J. Biol. Chem. 261: 2434?2440.

Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., and Montal, M. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation. J. Biol. Chem. 255: 8340?8350.

Barrantes, F. J. 1982. Interactions of the membrane-bound acetylcholine receptor with the non-receptor peripheral v-peptide. Pages 315?328,in F. Hucho, (ed.), Neuroreceptors, Walter de Gruyter & Co., Berlin, New York.

Sachs, A. B., Lenchitz, B., Noble, R. L., and Hess, G. P. 1982. A convenient large-scale method for the isolation of membrane vesicles permeable to a specific inorganic ion: isolation and characterization of functional acetylcholine receptor-containing vesicles from the electric organ ofElectrophorus electricus. Anal. Biochem. 124: 185?190.

Schmidt, J., and Raftery, M. A. 1973. A simple assay for the study of solubilized acetylcholine receptor. Anal. Biochem. 52: 349?354.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265?275.

Folch, J., Less, M., and Sloan-Stanley, G. M. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497?509.

Nores, G. A., and Caputto, R. 1984. Inhibition of the UDP-N-acetylgalactosamine: GM3, N-acetylgalactosminyl transferase by gangliosides. J. Neurochem. 42: 1205?1211.

Svennerholm, L. 1957. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 24: 604?611.

Magnani, J. L., Brockhaus, M., Smith, D. F., Ginsburg, V., Blaszczyk, M., Mitchell, K. F., Steplewski, Z., and Koprowski, Z. 1981. A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma. Science 212: 55?56.

Daniotti, J. L., Landa, C., gravotta, D., and Maccioni, H. J. F. 1990. GD3 ganglioside is prevalent in fully differentiated neurons from rat retina. J. Neurosc. Res. 26: 436?446.

Greis, C., and Rösner, H. 1990. C-pathway polysialogangliosides in the nervous tissue of vertebrates, reacting with the monoclonal antibody Q211. Brain Res. 517: 105?110.

Cumar, F. A., Maggio, B., and Caputto, R. 1982. Gangliosidecholera toxin interactions: a binding and lipid monolayer study. Mol. Cell. Biochem. 46: 155?160.

Yu, R. K. 1972. Isolation of gangliosides from the electric organ ofElectrophorus electricus. J. Neurochem. 19: 2467?2469.

Richardson, P. J., Walker, J. H., Jones, R. T., and Whittaker, V. P. 1982. Identification of a cholinergic-specific antigen chol-1 as a ganglioside. J. Neurochem. 38: 1605?1614.

Ferretti, P., and Borroni, E. 1984. Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present inTorpedo electromotor presynaptic plasma membranes. J. Neurochem. 42: 1085?1093.

Slenzka, K., and Rahmann, H. 1989. Comparative investigation of the ganglioside composition and content in different organs of electric fishes (Torpedo marmorata, Gnathonemus petersi, Apter onotus albifrons) Zool. Jb. Physiol. 93: 191?201.

Ledeen, R. W., Parsons, S. M., Diebler, M. F., Sbaschnig-Agler, M., and Lazereg, S. 1988. Ganglioside composite of synaptic vesicles fromTorpedo electric organ. J. Neurochem. 51: 1465?1469.

Derrington, E. A., Masco, D., and Whittaker, V. P. 1989. Confirmation of the cholinergic specificity of the Chol-1 gangliosides in mammalian brain using affinity purified antisera and lesions affecting the cholinergic input to the hippocampus. J. Neurochem. 53: 1686?1692.

Giuliani, A., Calappi, E., Borroni, E., Whittaker, V. P., Sonnino, S., and Tettamanti, G. 1990. Further studies on the ganglioside nature of the cholinergic-specific antigen, Chol-1. Arch. Biochem. Biophys. 280: 211?216.