Gamma ray and neutron shielding properties of some concrete materials
Tài liệu tham khảo
Akkurt, 2010, Gamma-ray shielding properties of concrete including barite at different energies, Prog. Nucl. Energy, 52, 620, 10.1016/j.pnucene.2010.04.006
Bentz, 2011, Thermal properties of high-volume fly ash mortars and concretes, J. Build. Phys., 34, 263, 10.1177/1744259110376613
Blizard, 1962, vol. III
Creagh, 1987, The resolution of discrepancies in tables of photon attenuation coefficients, Nucl. Instr. Meth. A, 255, 1, 10.1016/0168-9002(87)91064-3
Damla, 2010, Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey, J. Hazard. Mater., 176, 644, 10.1016/j.jhazmat.2009.11.080
Demirboğa, 2007, Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures, Build. Environ., 42, 2467, 10.1016/j.buildenv.2006.06.010
El-Khayatt, 2009, MERCSF-N calculation program for fast neutron removal cross-sections in composite shields, Ann. Nucl. Energy, 36, 832, 10.1016/j.anucene.2009.01.013
El-Khayatt, 2010, Radiation shielding of concrete containing different lime/silica ratios, Ann. Nucl. Energy, 37, 991, 10.1016/j.anucene.2010.03.001
El-Khayatt, 2011, NXcom - A program for calculating attenuation coefficients of fast neutrons and gamma-rays, Ann. Nucl. Energy, 38, 128, 10.1016/j.anucene.2010.08.003
Gerward, 2001, X-ray absorption in matter: reengineering XCOM, Radiat. Phys. Chem., 60, 23, 10.1016/S0969-806X(00)00324-8
Gerward, 2004, WinXCom – a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653, 10.1016/j.radphyschem.2004.04.040
Glasstone, 1986
Hine, 1952, The effective atomic numbers of materials for various gamma processes, Phys. Rev., 85, 725
Shi, 2009, Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete, Constr. Build. Mater., 23, 1980, 10.1016/j.conbuildmat.2008.08.021
Kaplan, 1989
Kerur, 1991, A novel method for the determination of x-ray mass attenuation coefficients, Int. J. Rad. Appl. Instrum. A, 42, 571, 10.1016/0883-2889(91)90164-V
Kurudirek, 2010, Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions, Int. J. Appl. Radiat. Isot., 68, 106
Kurudirek, 2009, A study of photon interaction in some building materials: high-volume admixture of blast furnace slag into Portland cement, Radiat. Phys. Chem., 78, 751, 10.1016/j.radphyschem.2009.03.070
Manohara, 2007, Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV, Nucl. Instr. Meth. B, 258, 321, 10.1016/j.nimb.2007.02.101
Manohara, 2008, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instr. Meth. B, 266, 3906, 10.1016/j.nimb.2008.06.034
Profio, 1979
Singh, 2007, A study of photon interaction parameters in some commonly used solvents, J. Radiol. Protection, 27, 79, 10.1088/0952-4746/27/1/005
Türkmen, 2007, A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures, Build. Environ., 43, 1127, 10.1016/j.buildenv.2007.02.005
Türkmen, 2008, Calculation of radiation attenuation coefficients in Portland cements mixed with silica fume, blast furnace slag and natural zeolite, Ann. Nucl. Energy, 35, 1937, 10.1016/j.anucene.2008.03.012
Sun, 2004, The influence of mineral admixtures on resistance to corrosion of steel bars in green high-performance concrete, Cem. Concr. Res., 34, 1781, 10.1016/j.cemconres.2004.01.008
Zavel’skii, 1964, Mass absorption coefficients of γ-radiation in soils, and errors in measurements made by the γ method, Atom. Energy, 16, 319, 10.1007/BF01122984