Gamma oryzanol niosomal gel for skin cancer: formulation and optimization using quality by design (QbD) approach

AAPS Open - Tập 7 Số 1
Harsh Shah1, Ankit Gotecha2, Dolly Jetha2, Amarjitsing Rajput3, Aditi Bariya4, Shital S. Panchal2, Shital Butani2
1J-Star Research Inc., Cranbury, NJ, 08512, USA
2Department of Pharmaceutical Technology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
3Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra, 411038, India
4Arihant School of Pharmacy Education and Research, Adalaj, Gandhinagar, Gujarat, 382421, India

Tóm tắt

AbstractSkin cancer is fifth most diagnosed disease in human population due to ultraviolet radiation (UV) exposure. Gamma oryzanol (OZ) is a natural antioxidant, and it also has skin anti-aging properties. OZ is naturally found in rice bran oil. The main aim of the present work was to optimize OZ niosomal formulation using quality by design approach including one variable at a time and full factorial design. Niosomes were prepared by solvent injection method and characterized for size, polydispersity index, drug entrapment, and transmission electron microscopy. The optimized batch obtained at X1 [drug to span 60 molar ratio (1:5)], X2 [volume of hydration (75 mL)], and X3 [stirring speed (2500 rpm)] to Y1 [average vesicle size (196.6 nm)] and Y2 [entrapment efficiency (78.31%)] as dependent variables. The optimized OZ noisomes were formulated by niosomal gel to provide improved physicochemical stability upon topical application against UV. The niosomal gel was characterized using pH meter, viscometer, Draize test for skin irritancy, ex vivo permeation studies, and stability studies. Ex vivo permeation studies of OZ niosomal gel not only showed fourfold higher permeation but also exhibited better drug retention in dermal layers of skin as compared to OZ gel. Quality Target Product Profile of OZ niosomal formulation was generated. Risk analysis of optimized OZ gel suggested most critical quality attributes (CQAs) and critical process parameters (CPPs) to be characterized as low risk. Thus, γ-oryzanol niosomal gel for topical use can serve as a promising prophylactic treatment in skin cancer, and the developed prototype formulation can be further extended to future newly discovered drugs with similar characteristics. Graphical abstract

Từ khóa


Tài liệu tham khảo

Al Sabaa H, Mady FM, Hussein AK, Abdel-Wahab HM, Ragaie MH (2018) Dapsone in topical niosomes for treatment of acne vulgaris. Afr J Pharm Pharmacol 12(18):221–230

Bhaskaragoud G, Rajath S, Mahendra V, Kumar GS, Krishna AG, Kumar GS (2016) Hypolipidemic mechanism of oryzanol components-ferulic acid and phytosterols. Biochem Biophys Res Commun 476(2):82–89

Chaturvedi K, Gajera BY, Xu T, Shah H, Dave RH (2018) Influence of processing methods on physico-mechanical properties of ibuprofen/HPC-SSL formulation. Pharm Dev Technol 23(10):1108–1116

Code U, Law P. Code of Federal Regulations (CFR). Electronic version on< http://www.ecfr.gov/cgi-bin/ECFR. 2017.

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57

Das S, Wong AB (2020) Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci Rep 10(1):1–18

Elder D, Teasdale A (2017) ICH Q9 quality risk management. In: ICH Quality Guidelines: An Implementation Guide, pp 579–610

Geusens B, Strobbe T, Bracke S, Dynoodt P, Sanders N, Van Gele M et al (2011) Lipid-mediated gene delivery to the skin. Eur J Pharm Sci 43(4):199–211

Ghaderi S, Ghanbarzadeh S, Mohammadhassani Z, Hamishehkar H (2014) Formulation of gammaoryzanol-loaded nanoparticles for potential application in fortifying food products. Adv Pharm Bull 4(Suppl 2):549

Guideline IHT (2003) Stability testing of new drug substances and products. Q1A (R2), current step 4:1–24

Hamishehkar H, Rahimpour Y, Kouhsoltani M (2013) Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 10(2):261–272

Hua S (2015) Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 6:219

Juliano C, Cossu M, Alamanni MC, Piu L (2005) Antioxidant activity of gamma-oryzanol: mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int J Pharm 299(1-2):146–154

Kozuka C, Yabiku K, Takayama C, Matsushita M, Shimabukuro M, Masuzaki H (2013) Natural food science based novel approach toward prevention and treatment of obesity and type 2 diabetes: recent studies on brown rice and γ-oryzanol. Obes Res Clin Pract 7(3):e165–ee72

Raghavendra & Kumar B (2021) Studies on kinetics of isomerization of gamma oryzanol at air-water interface. Thin Solid Films 138764:1–8

Lee LY (2016) Study of the photodegradation and photostability of anti-cancer drugs in different media towards the development of both new actinometers and liquid formulations

LezamaDávila CM (1999) Vaccination of C57BL/10 mice against cutaneous leishmaniasis. Use of purified gp63 encapsulated into niosomes surfactants vesicles: a novel approach. Mem Inst Oswaldo Cruz 94(1):67–70

Liang Y, Gao Y, Lin Q, Luo F, Wu W, Lu Q et al (2014) A review of the research progress on the bioactive ingredients and physiological activities of rice bran oil. Eur Food Res Technol 238(2):169–176

Lohcharoenkal W, Manosaroi A, Götz F, Werner RG, Manosroi W, Manosaroi J (2011) Potent enhancement of GFP uptake into HT-29 cells and rat skin permeation by coincubation with tat peptide. J Pharm Sci 100(11):4766–4773

Lowry GV, Hill RJ, Harper S, Rawle AF, Hendren CO, Klaessig F et al (2016) Guidance to improve the scientific value of zeta-potential measurements in NanoEHS. Environ Sci Nano 3(5):953–965

Manosroi A, Chutoprapat R, Abe M, Manosroi W, Manosroi J (2012) Transdermal absorption enhancement of rice bran bioactive compounds entrapped in niosomes. AAPS PharmSciTech 13(1):323–335

Marianecci C, Rinaldi F, Mastriota M, Pieretti S, Trapasso E, Paolino D et al (2012) Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J Control Release 164(1):17–25

Mehta SK, Jindal N, Kaur G (2011) Quantitative investigation, stability and in vitro release studies of anti-TB drugs in triton niosomes. Colloids Surf B: Biointerfaces 87(1):173–179

Mezei M, Gulasekharam V (1982) Liposomes—a selective drug delivery system for the topical route of administration: gel dosage form. J Pharm Pharmacol 34(7):473–474

Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185:22–36

Muzzalupo R, Tavano L, Cassano R, Trombino S, Ferrarelli T, Picci N (2011) A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur J Pharm Biopharm 79(1):28–35

Nasr M, Mansour S, Mortada ND, Elshamy A (2008) Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J Microencapsul 25(7):499–512

Osborne R, Perkins M (1994) An approach for development of alternative test methods based on mechanisms of skin irritation. Food Chem Toxicol 32(2):133–142

Panchal SS, Patidar RK, Jha AB, Allam AA, Ajarem J, Butani SB (2017) Anti-inflammatory and antioxidative stress effects of oryzanol in glaucomatous rabbits. J Ophthalmol 2017:1–9

Pardakhty A, Varshosaz J, Rouholamini A (2007) In vitro study of poxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 328(2):130–141

Priprem A, Limsitthichaikoon S, Thappasarapong S (2015) Anti-inflammatory activity of topical anthocyanins by complexation and niosomal encapsulation. Int J Chem Mol Eng 9(2):142–146

Rajput AP, Butani SB (2019) Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol 51:214–223

Rawal T, Mishra N, Jha A, Bhatt A, Tyagi RK, Panchal S et al (2018) Chitosan nanoparticles of gamma-oryzanol: formulation, optimization, and in vivo evaluation of anti-hyperlipidemic activity. AAPS PharmSciTech 19(4):1894–1907

Reena M, Krishnakantha T, Lokesh B (2010) Lowering of platelet aggregation and serum eicosanoid levels in rats fed with a diet containing coconut oil blends with rice bran oil or sesame oil. Prostaglandins Leukot Essent Fat Acids 83(3):151–160

Rodsuwan U, Pithanthanakul U, Thisayakorn K, Uttapap D, Boonpisuttinant K, Vatanyoopaisarn S et al (2021) Preparation and characterization of gamma oryzanol loaded zein nanoparticles and its improved stability. Food Sci Nutr 9(2):616–624

Shah H, Parikh D, Butani S (2014) Formulation development & optimisation of milk dissolving tablets as novel paediatric dosage form. Int J Drug Formln Res 5:84–96

Shah HS, Chaturvedi K, Dave RH, Bates S, Haware RV, Morris KR (2020) New insights on warfarin sodium 2-propanol solvate solid-state changes using a multivariate approach. Cryst Growth Des 20(11):7328–7340

Shah HS, Chaturvedi K, Hamad M, Bates S, Hussain A, Morris K (2019) New Insights on solid-state changes in the levothyroxine sodium pentahydrate during dehydration and its relationship to chemical instability. AAPS PharmSciTech 20(1):1–10

Shah HS, Rubin RF, Lakhwani GR, DiGregorio R, Dave RH (2021) Stability of insulin detemir injection in different primary packaging systems at room temperature. J Pharm Pract 34(2):253–258

Sharma V, Anandhakumar S, Sasidharan M (2015) Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: an efficient carrier for cancer multi-drug delivery. Mater Sci Eng C 56:393–400

Suh M-H, Yoo S-H, Lee HG (2007) Antioxidative activity and structural stability of microencapsulated γ-oryzanol in heat-treated lards. Food Chem 100(3):1065–1070

Tagne J-B, Kakumanu S, Nicolosi RJ (2008) Nanoemulsion preparations of the anticancer drug dacarbazine significantly increase its efficacy in a xenograft mouse melanoma model. Mol Pharm 5(6):1055–1063

Toyoda M, Hama S, Ikeda Y, Nagasaki Y, Kogure K (2015) Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int J Pharm 483(1-2):110–114

Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258(1-2):141–151

Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim H-S, Kim J-K (2016) Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine 11:3813

Zeinali M, Abbaspour-Ravasjani S, Soltanfam T, Paiva-Santos AC, Babaei H, Veiga F et al (2021) Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes. Life Sci 119759:1–15

Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109(4):691–702