Gamma irradiation of adenine and guanine adsorbed into hectorite and attapulgite
Tài liệu tham khảo
Bernal, 1949, The physical basis of life, Proc. Phys. Soc., 62, 537, 10.1088/0370-1298/62/9/301
Goldschmidt, 1952, Geochemical aspects of the origin of complex organic molecules on the Earth, as precursors to organic life, New Biology, 12, 97
Hashizume, 2015, Adsorption of nucleic acid bases, ribose, and phosphate by some clay minerals, Life, 5, 637, 10.3390/life5010637
Negrón-Mendoza, 2016, Chemical evolution: an approach from radiation chemistry, Radiation & Applications, 1, 159
Vojood, 2022, Prebiotic synthesis of sugar and molecular dynamic simulation of 2,3-dihydroxypropanal adsorption on montmorillonite, Iran. J. Chem. Chem. Eng. (Int. Engl. Ed.), 0
Sahai, 2022
Greenwell, 2006, Layered double hydroxide minerals as possible prebiotic information storage and transfer compounds, Orig. Life Evol. Biosph., 36, 13, 10.1007/s11084-005-2068-2
Hazen, 2010, Mineral surfaces, geochemical complexities, and the origins of life, Cold Spring Harbor Perspect. Biol., 2, 5487, 10.1101/cshperspect.a002162
Hashizume, 2010, Adsorption of adenine, cytosine, uracil, ribose, and phosphate by Mg-exchanged montmorillonite, Clay Miner., 45, 469, 10.1180/claymin.2010.045.4.469
Pedreira-Segade, 2018, Effects of salinity on the adsorption of nucleotides onto phyllosilicates, Phys. Chem. Chem. Phys., 20, 1938, 10.1039/C7CP07004G
Porter, 2001, Analysis of peptides synthesized in the presence of SAz-1 montmorillonite and Cu2+ exchanged hectorite, Biophys. Chem., 91, 115, 10.1016/S0301-4622(01)00159-4
Greenland, 1962, Adsorption of glycine and its di-, tri-, and tetra-peptides by montmorillonite, Trans. Faraday Soc., 58, 829, 10.1039/tf9625800829
de Castro Silva, 2020, A comparative study of alanine adsorption and condensation to peptides in two clay minerals, Appl. Clay Sci., 192, 10.1016/j.clay.2020.105617
Menor-Salván, 2022, Clays and the Origin of Life: The Experiments, Life, 12, 259
Perezgasga, 2005, Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite, Orig. Life Evol. Biosph., 35, 91, 10.1007/s11084-005-0199-0
Bass, 1971, Montmorillonite and serpentine in Orgueil meteorite, Geochem. Cosmochim. Acta, 35, 139, 10.1016/0016-7037(71)90053-6
Baú, 2020, Adenine adsorbed onto montmorillonite exposed to ionizing radiation: essays on prebiotic chemistry, Astrobiology, 20, 26, 10.1089/ast.2018.1909
Torii, 1987, Synthesis of hectorite, Clay Sci., 7, 1
Huggett, 2015, Clay minerals
Nazir, 2016, 35
Suárez, 2018, Spanish palygorskites: geological setting, mineralogical, textural and crystal-chemical characterization, Eur. J. Mineral, 30, 733, 10.1127/ejm/2018/0030-2753
Hazen, 2013, Clay mineral evolution, Am. Mineral., 98, 2007, 10.2138/am.2013.4425
Baltar, 2009, Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid, Appl. Clay Sci., 42, 597, 10.1016/j.clay.2008.04.008
Haden, 1967, Attapulgite: its properties and applications, Ind. Eng. Chem., 59, 58, 10.1021/ie51403a012
Huang, 2008, Selective adsorption of tannin from flavonoids by organically modified attapulgite clay, J. Hazard Mater., 160, 382, 10.1016/j.jhazmat.2008.03.008
Murray, 2000, Traditional and new applications for kaolin, smectite, and palygorskite: a general overview, Appl. Clay Sci., 17, 207, 10.1016/S0169-1317(00)00016-8
Ferris, 1978, HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth, J. Mol. Evol., 11, 293, 10.1007/BF01733839
Voet, 1983, Prebiotic adenine synthesis from HCN-Evidence for a newly discovered major pathway, Bioorg. Chem., 12, 8, 10.1016/0045-2068(83)90003-2
Martins, 2008, Extraterrestrial nucleobases in the Murchison meteorite, Earth Planet Sci. Lett., 270, 130, 10.1016/j.epsl.2008.03.026
Pearce, 2016, Meteorites and the rna world: a thermodynamic model of nucleobase synthesis within planetesimals, Astrobiology, 16, 853, 10.1089/ast.2015.1451
Cataldo, 2018, Radiolysis and radioracemization of RNA ribonucleosides: implications for the origins of life, J. Radioanal. Nucl. Chem., 318, 1649, 10.1007/s10967-018-6276-4
Oró, 1960, Synthesis of adenine from ammonium cyanide, Biochem. Biophys. Res. Commun., 2, 407, 10.1016/0006-291X(60)90138-8
Sanchez, 1968, Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines, J. Mol. Biol., 38, 121, 10.1016/0022-2836(68)90132-0
Oró, 1961, Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide, Arch. Biochem. Biophys., 94, 217, 10.1016/0003-9861(61)90033-9
Saladino, 2004, Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites, Chembiochem, 5, 1558, 10.1002/cbic.200400119
Levy, 1999, Production of guanine from NH4CN polymerizations, J. Mol. Evol., 165, 10.1007/PL00006539
Barks, 2010, Guanine, adenine, and hypoxanthine production in UV-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation, Chembiochem, 11, 1240, 10.1002/cbic.201000074
Abelson, 1966, Chemical events on the primitive earth, Proc. Natl. Acad. Sci. USA, 55, 1365, 10.1073/pnas.55.6.1365
Mosqueira, 1996, A review of conditions affecting the radiolysis due to40K on nucleic acid bases and their derivatives adsorbed on clay minerals: implications in prebiotic chemistry, Orig. Life Evol. Biosph., 26, 75, 10.1007/BF01808161
Draganić, 1993
van Hemmen, 1971, The decomposition of adenine by ionizing radiation, Radiat. Res., 46, 444, 10.2307/3573426
Cysewski, 1995, Ab initio studies on the structure and properties of the hydroxyl-radical-modified adenine derivatives in different tautomeric forms, J. Phys. Chem., 99, 9702, 10.1021/j100024a010
Conlay, 1963, Effect of ionizing radiation on adenine in aerated and de-aerated aqueous solutions, Nature, 197, 555, 10.1038/197555a0
Ponnamperuma, 1963, The radiation decomposition of adenine, Radiat. Res., 18, 540, 10.2307/3571398
Cataldo, 2017, Radiation chemical aspects of the origins of life, J. Radioanal. Nucl. Chem., 311, 1081, 10.1007/s10967-016-4914-2
Guzman, 2000, Irradiation of adenine adsorbed in Na-montmorillonite, 271
Ramírez-Carreón, 2018, Radiolysis of adenine and its complementary bases in aqueous solutions and clay suspensions, J. Radioanal. Nucl. Chem., 318, 2435, 10.1007/s10967-018-6264-8
Baú, 2019, Effect of γ-radiation on adenine dissolved in distilled water, saline solutions and artificial seawater resembling that of 4.0 billion years ago, Int. J. Astrobiol., 19, 1
Paredes-Arriaga, 2021, Role of Na+-montmorillonite in the stability of guanine exposed to high-radiation energy in primitive environments: heterogeneous models, Radiat. Phys. Chem., 186, 10.1016/j.radphyschem.2021.109509
Sleep, 2001, Carbon dioxide cycling and implications for climate on ancient Earth, J Geophys Res Planets, 106, 1373, 10.1029/2000JE001247
Schultz, 1997, Controls on the physics and chemistry of seafloor hydrothermal circulation, Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci., 355, 387, 10.1098/rsta.1997.0014
Martin, 2008, Hydrothermal vents and the origin of life, Nat. Rev. Microbiol., 6, 805, 10.1038/nrmicro1991
Toner, 2019, Alkaline lake settings for concentrated prebiotic cyanide and the origin of life, Geochem. Cosmochim. Acta, 260, 124, 10.1016/j.gca.2019.06.031
Roy, 2007, Chemical evolution: the mechanism of the formation of adenine under prebiotic conditions, Proc. Natl. Acad. Sci. U. S. A., 104, 17272, 10.1073/pnas.0708434104
Oba, 2022, Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites, Nat. Commun., 13, 1, 10.1038/s41467-022-29612-x
Pastorek, 2020, Primordial radioactivity and prebiotic chemical evolution: effect of γ radiation on formamide-based synthesis, J. Phys. Chem. B, 124, 8951, 10.1021/acs.jpcb.0c05233
Draganic, 1993
Draganić, 1971, The radiation chemistry of water, J Chem. Educ., 49, A494
Pawar, 2009, Selective adsorption of carbon dioxide over nitrogen on calcined synthetic hectorites with tailor-made porosity, Appl. Clay Sci., 46, 109, 10.1016/j.clay.2009.07.009
Tong, 2019, Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate, Environ. Sci. Pollut. Res. Int., 26, 16482, 10.1007/s11356-019-04895-8
Xia, 2014, Effect of dendrimer-like PAMAM grafted attapulgite on the microstructure and morphology of Nylon-6, Polym. Compos., 35, 627, 10.1002/pc.22704
Shi, 2011, Polyurethane grafted attapulgite as novel fillers for nylon 6 nanocomposites, J. Wuhan Univ. Technol.-Materials Sci. Ed., 615, 10.1007/s11595-011-0278-1
Carrado, 1997, A study of organo-hectorite clay crystallization, Clay Miner., 32, 29, 10.1180/claymin.1997.032.1.05
Perezgasga, 2005, Sites of adsorption of adenine, uracil, and their corresponding derivatives on sodium montmorillonite, Orig. Life Evol. Biosph., 35, 91, 10.1007/s11084-005-0199-0
Paredes-Arriaga, 2021, Role of Na+-montmorillonite in the stability of guanine exposed to high-radiation energy in primitive environments: heterogeneous models, Radiat. Phys. Chem., 186, 10.1016/j.radphyschem.2021.109509
Baxendale, 1964, Effects of oxygen and pH in the radiation chemistry of aqueous solutions, Radiat. Res. Suppl., 4, 114, 10.2307/3583572
Naumov, 2008, The energetics of rearrangement and water elimination reactions in the radiolysis of the DNA bases in aqueous solution (eaq and ·OH attack): DFT calculations, Radiat. Res., 169, 355, 10.1667/RR1081.1
von Sonntag, 1991, The chemistry of free-radical-mediated DNA damage, Basic Life Sci., 58
LaVerne, 2000, OH radicals and oxidizing products in the gamma radiolysis of water, Radiat. Res., 153, 196, 10.1667/0033-7587(2000)153[0196:ORAOPI]2.0.CO;2
Yamamoto, 1986, Degradation of adenine in aqueous solution containing 3HHO. Comparison with 60Co gamma-radiolysis, J. Radiat. Res., 27, 130, 10.1269/jrr.27.130
Hartmann, 2007, Radiolysis of aqueous adenine (vitamin B4) and 8-hydroxyadenine, Radiat. Phys. Chem., 76, 834, 10.1016/j.radphyschem.2006.04.012
Dizdaroglu, 1985, Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution, Biochemistry, 24, 4476, 10.1021/bi00337a032
Holian, 1967, Identification of specific mode of oxidation in the radiolysis of the purine bases in oxygenated aqueous solution, J. Phys. Chem., 71, 462, 10.1021/j100861a048
Beall, 2004, Self-assembly of organic molecules on montmorillonite, Appl. Clay Sci., 27, 179, 10.1016/j.clay.2004.06.006
Lailach, 1968, Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (Clay-organic studies XII), Clay Clay Miner., 16, 285, 10.1346/CCMN.1968.0160405
Kaluđerović, 2017, Influence of the organic complex concentration on adsorption of herbicide in organic modified montmorillonite, Journal of Environmental Science and Health, Part B., 52, 291, 10.1080/03601234.2017.1281636
Haden, 1961, Attapulgite: properties and uses, Clay Clay Miner., 10, 284, 10.1346/CCMN.1961.0100123
McCarter, 1950, Thermal activation of attapulgus clay - effect on physical and adsorpptive properties, Ind. Eng. Chem., 42, 529, 10.1021/ie50483a035
Morse, 1998, Hadean Ocean carbonate geochemistry, Aquat. Geochem., 301, 10.1023/A:1009632230875
Macleod, 1994, Hydrothermal and oceanic pH conditions of possible relevance to the origin of life, Orig. Life Evol. Biosph., 24, 19, 10.1007/BF01582037
Russell, 1997, The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front, J Geol Soc London, 154, 377, 10.1144/gsjgs.154.3.0377
Negron-Mendoza, 1998, Radiolysis of carboxylic acids adsorbed in clay minerals, Radiat. Phys. Chem., 52, 395, 10.1016/S0969-806X(98)00059-0
Kitadai, 2018, Origins of building blocks of life: a review, Geosci. Front., 9, 1117, 10.1016/j.gsf.2017.07.007
Schwendinger, 1989, Possible role of copper and sodium chloride in prebiotic evolution of peptides, Anal. Sci., 5, 411, 10.2116/analsci.5.411
Sheng, 2009, Comprehensive investigation of the energetics of pyrimidine nucleoside formation in a model prebiotic reaction, J. Am. Chem. Soc., 131, 16088, 10.1021/ja900807m
Negron, 2002, On the structural stability of montmorillonite submitted to heavy γ-irradiation, Clay Clay Miner., 50, 35, 10.1346/000986002761002649
Bujdák, 1999, Silica, alumina and clay catalyzed peptide bond formation: enhanced efficiency of alumina catalyst, Orig. Life Evol. Biosph., 29, 451, 10.1023/A:1006524703513