Gamma-convergence of gradient flows on Hilbert and metric spaces and applications

Discrete and Continuous Dynamical Systems - Tập 31 Số 4 - Trang 1427-1451 - 2011
Sergio Conti1,2,3,4
1CNRS, UMR 7598 LJLL, Paris, F-75005, France
2Courant Institute, New York University, 251 Mercer St, New York, NY 10012, USA
3Laboratoire Jacques-Louis Lions Paris, F-75005 France;
4UPMC Univ. Paris 06, UMR 7598

Tóm tắt

Từ khóa


Tài liệu tham khảo

N. Alikakos, 1994, <em>Convergence of the Cahn-Hilliard equation to the Hele-Shaw model</em>,, Arch. Rational Mech. Anal., 128, 165, 10.1007/BF00375025

L. Ambrosio, 1995, <em>Minimizing movements</em>,, Rend. Accad. Naz. Sci, 19, 191

L. Ambrosio, 2008, "Gradient Flows in Metric Spaces and in The Space of Probability Measures,", Second edition

L. Ambrosio, 2011, <em>Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices</em>,, Ann. Institut Henri Poincaré Anal. Non Linéaire, 28, 217, 10.1016/j.anihpc.2010.11.006

L. Ambrosio, 2008, <em>A gradient flow approach to an evolution problem arising in superconductivity</em>,, Comm. Pure Appl. Math., 61, 1495, 10.1002/cpa.20223

F. Bethuel, 1994, "Ginzburg-Landau Vortices,", Progress in Nonlinear Differential Equations and their Applications, 13

F. Bethuel, 2006, <em>Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature</em>,, Ann. of Math. (2), 163, 37, 10.4007/annals.2006.163.37

F. Bethuel, 2005, <em>Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics</em>,, Duke Math. J., 130, 523, 10.1215/S0012-7094-05-13034-4

F. Bethuel, 2007, <em>Quantization and motion law for Ginzburg-Landau vortices</em>,, Arch. Ration. Mech. Anal., 183, 315, 10.1007/s00205-006-0018-4

F. Bethuel, 2007, <em>Dynamics of multiple degree Ginzburg-Landau vortices,</em>, omm. Math. Phys., 272, 229, 10.1007/s00220-007-0206-6

L. Bronsard, 1991, <em>Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics</em>,, J. Differential Equations, 90, 211, 10.1016/0022-0396(91)90147-2

S. J. Chapman, 1996, <em>A mean-field model of superconducting vortices</em>,, European J. Appl. Math., 7, 97, 10.1017/S0956792500002242

X. Chen, 1992, <em>Generation and propagation of interfaces for reaction-diffusion equations</em>,, J. Differential Equations, 96, 116, 10.1016/0022-0396(92)90146-E

E. De Giorgi, 1980, <em>New problems in $\Gamma$-convergence and $G$-convergence</em>,, in, 183

E. De Giorgi, 1993, "New Problems on Minimizing Movements. Boundary Value Problems for Partial Differential Equations and Applications,", 81-98, 29, 81

E. De Giorgi, 1980, <em>Problems of evolution in metric spaces and maximal decreasing curve</em>,, Att Accad Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68, 180

M. Degiovanni, 1985, <em>Evolution equations with lack of convexity</em>,, Nonlinear Anal., 9, 1401, 10.1016/0362-546X(85)90098-7

P. de Mottoni, 1990, <em>Development of interfaces in</em> $R^N$,, Proc. Roy. Soc. Edinburgh Sect. A, 116, 207, 10.1017/S0308210500031486

W. E, 2004, <em>Minimum action method for the study of rare events</em>,, Comm. Pure Appl. Math., 57, 637, 10.1002/cpa.20005

L. C. Evans, 1992, <em>Phase transitions and generalized motion by mean curvature</em>,, Comm. Pure Appl. Math, 45, 1097, 10.1002/cpa.3160450903

J. Hutchinson, 2000, <em>Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory</em>,, Calc. Var. Partial Differential Equations, 10, 49, 10.1007/PL00013453

T. Ilmanen, 1993, <em>Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature</em>,, J. Differential Geom, 38, 417, 10.4310/jdg/1214454300

R. L. Jerrard, 1999, <em>Vortex dynamics for the Ginzburg-Landau wave equation</em>,, Calc. Var. Partial Differential Equations, 9, 1, 10.1007/s005260050131

R. L. Jerrard, 1998, <em>Dynamics of Ginzburg-Landau vortices</em>,, Arch. Rational Mech. Anal., 142, 99, 10.1007/s002050050085

R. L. Jerrard, 2009, <em>Critical points via Gamma-convergence: General theory and applications</em>,, Jour. Eur. Math. Soc., 11, 705, 10.4171/JEMS/164

H. Jian, 1999, <em>A relation between $\Gamma$-convergence of functionals and their associated gradient flows</em>,, Sci. China Ser. A, 42, 133, 10.1007/BF02876564

R. V. Kohn, 2007, <em>Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation</em>,, Comm. Pure Appl. Math., 60, 393, 10.1002/cpa.20144

R. V. Kohn, 2006, <em>Sharp-interface limit of the Allen-Cahn action functional in one space dimension</em>,, Calc. Var. Partial Differential Equations, 25, 503, 10.1007/s00526-005-0370-5

M. Kurzke, 2007, <em>The gradient flow motion of boundary vortices</em>,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24, 91, 10.1016/j.anihpc.2005.12.002

N. Le, 2008, <em>A Gamma-Convergence approach to the Cahn-Hilliard equation</em>,, Calc. Var. Partial Differential Equations, 32, 499, 10.1007/s00526-007-0150-5

N. Le, 2010, <em>On the convergence of the Ohta-Kawasaki Equation to motion by nonlocal Mullins-Sekerka Law</em>,, SIAM. J. Math. Analysis., 42, 1602, 10.1137/090768643

F. H. Lin, 1996, <em>Some dynamical properties of Ginzburg-Landau vortices</em>,, Comm. Pure Appl. Math., 49, 323, 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E

A. Marino, 1989, <em>Curves of maximal slope and parabolic variational inequalities on nonconvex constraints</em>,, Ann Scuola Norm. Sup. Pisa Cl. Sci. (4), 16, 281

A. Mielke, 2008, <em>Weak convergence methods for Hamiltonian multiscale problems</em>,, Discrete Contin. Dyn. Syst. Ser. A, 20, 53, 10.3934/dcds.2008.20.53

A. Mielke, 2008, <em>$\Gamma$-limits and relaxations for rate-independent evolutionary problems</em>,, Calc. Var. PDE, 31, 387, 10.1007/s00526-007-0119-4

L. Modica, 1977, <em>Il limite nella $\Gamma $-convergenza di una famiglia di funzionali ellittici</em>,, Boll. Un. Mat. Ital. A (5), 14, 526

L. Mugnai, 2008, <em>The Allen-Cahn action functional in higher dimensions</em>,, Interfaces Free Bound., 10, 45, 10.4171/IFB/179

L. Mugnai, <em>Convergence of the perturbed Allen-Cahn equations to forced mean curvature flow</em>,, preprint.

M. Novaga, 2011, <em>Closed curves of prescribed curvature and a pinning effect,</em>, Networks Heterog. Media \textbf{6} (2011), 6, 77, 10.3934/nhm.2011.6.77

C. Ortner, 2005, "Two Variational Techniques for the Approximation of Curves of Maximal Slope,", Technical report NA05/10

C. Ortner, 2006, <em>Gradient flows as a selection procedure for equilibria of nonconvex energies</em>,, SIAM J. Math. Anal., 38, 1214, 10.1137/050643982

R. L. Pego, 1989, <em>Front migration in the nonlinear Cahn-Hilliard equation</em>,, Proc. Roy. Soc. London Ser. A, 422, 261, 10.1098/rspa.1989.0027

M. Röger, 2006, <em>On a modified conjecture of De Giorgi</em>,, Math. Z., 254, 675, 10.1007/s00209-006-0002-6

E. Sandier, 2004, <em>Gamma-convergence of gradient flows with applications to Ginzburg-Landau</em>,, Comm. Pure Appl. Math, 57, 1627, 10.1002/cpa.20046

E. Sandier, 2003, <em>Limiting vorticities for the Ginzburg-Landau equations</em>,, Duke Math J., 117, 403, 10.1215/S0012-7094-03-11732-9

E. Sandier, 2004, <em>A product-estimate for Ginzburg-Landau and corollaries</em>,, J. Func. Anal., 211, 219, 10.1016/S0022-1236(03)00199-X

E. Sandier, 2007, "Vortices in the Magnetic Ginzburg-Landau Model,", Progress in Nonlinear Differential Equations and their Applications, 70, 10.1007/978-0-8176-4550-2

E. Sandier, 2000, <em>A rigorous derivation of a free-boundary problem arising in superconductivity</em>,, Annales Scientifiques de l'ENS (4), 33, 561

N. Sato, 2008, <em>A simple proof of convergence of the Allen-Cahn Equation to Brakke's motion by mean curvature</em>,, Indiana Univ. Math. J, 57, 1743, 10.1512/iumj.2008.57.3283

R. Schätzle,, private communication.

S. Serfaty, 2005, <em>Stability in 2D Ginzburg-Landau passes to the limit</em>,, Indiana Univ. Math. J., 54, 199, 10.1512/iumj.2005.54.2497

S. Serfaty, 2007, <em>Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow. Part I: Study of the perturbed Ginzburg-Landau equation</em>,, Journal Eur. Math Society, 9, 177, 10.4171/JEMS/84

C. Villani, 2009, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338, 10.1007/978-3-540-71050-9_28

M. G. Westdickenberg, 2007, <em>Higher multiplicity in the one-dimensional Allen-Cahn action functional</em>,, Indiana Univ. Math. J., 56, 2935, 10.1512/iumj.2007.56.3182