Galois coinvariants of the unramified Iwasawa modules of multiple $$\mathbb {Z}_p$$ -extensions

Springer Science and Business Media LLC - Tập 45 - Trang 407-431 - 2020
Takashi Miura1, Kazuaki Murakami2, Keiji Okano3, Rei Otsuki4
1Department of Creative Engineering, National Institute of Technology, Tsuruoka College, Tsuruoka, Japan
2Department of Mathematical Sciences, Graduate School of Science and Engineering, Keio University, Yokohama, Japan
3Department of Teacher Education, Tsuru University, Yamanashi, Japan
4Department of Mathematics, Keio University, Yokohama, Japan

Tóm tắt

For a CM-field K and an odd prime number p, let $$\widetilde{K}'$$ be a certain multiple $$\mathbb {Z}_p$$ -extension of K. In this paper, we study several basic properties of the unramified Iwasawa module $$X_{\widetilde{K}'}$$ of $$\widetilde{K}'$$ as a $$\mathbb {Z}_p\llbracket \mathrm{Gal}(\widetilde{K}'/K)\rrbracket $$ -module. Our first main result is a description of the order of a Galois coinvariant of $$X_{\widetilde{K}'}$$ in terms of the characteristic power series of the unramified Iwasawa module of the cyclotomic $$\mathbb {Z}_p$$ -extension of K under a certain assumption on the splitting of primes above p. The second result is that if K is an imaginary quadratic field and if p does not split in K, then, under several assumptions on the Iwasawa $$\lambda $$ -invariant and the ideal class group of K, we determine a necessary and sufficient condition such that $$X_{\widetilde{K}}$$ is $$\mathbb {Z}_p\llbracket \mathrm{Gal}(\widetilde{K}/K)\rrbracket $$ -cyclic. Here, $$\widetilde{K}$$ is the $$\mathbb {Z}_p^2$$ -extension of K.

Tài liệu tham khảo

Bleher, F., Chinburg, T., Greenberg, R., Kakde, M., Pappas, G., Sharifi, R., Taylor, M.: Higher Chern classes in Iwasawa theory. Am. J. Math. 142, 627–682 (2020) Bourbaki, N.: Commutative Algebra. Chapters 1–7. Springer, Berlin (1998) Brink, D.: On \(\mathbb{Z}_p\)-embeddability of cyclic \(p\)-class fields. C. R. Math. Rep. Acad. Sci. Can. 27, 48–53 (2005) Darmon, H., Dasgupta, S., Pollack, R.: Hilbert modular forms and the Gross–Stark conjecture. Ann. Math. 174, 439–484 (2011) Dasgupta, S., Kakde, M., Ventullo, K.: On the Gross–Stark conjecture. Ann. Math. 188, 833–870 (2018) Deligne, P., Ribet, K.A.: Values of abelian \(L\)-functions at negative integers over totally real fields. Invent. Math. 59, 227–286 (1980) de Jeu, R., Roblot, X.F.: Conjectures, consequences, and numerical experiments for \(p\)-adic Artin \(L\)-functions. arXiv:1910.07739 Ferrero, B., Washington, L.C.: The Iwasawa invariant \(\mu _{p}\) vanishes for abelian number fields. Ann. Math. 109, 377–395 (1979) Fujii, S.: On the depth of the relations of the maximal unramified pro-\(p\) Galois group over the cyclotomic \(\mathbb{Z}_p\)-extension. Acta Arith. 149, 101–110 (2011) Fujii, S.: On a bound of \(\lambda \) and the vanishing of \(\mu \) of \(\mathbb{Z}_p\)-extensions of an imaginary quadratic field. J. Math. Soc. Jpn. 65, 277–298 (2013) Fujii, S.: On restricted ramifications and pseudo-null submodules of Iwasawa modules for \(\mathbb{Z}_p^2\)-extensions. J. Ramanujan Math. Soc. 29, 295–305 (2014) Fujii, S.: On Greenberg’s generalized conjecture for CM-fields. J. Reine Angew. Math. 731, 259–278 (2017) Greenberg, R.: The Iwasawa invariants of \(\Gamma \)-extensions of a fixed number field. Am. J. Math. 95, 204–214 (1973) Greenberg, R.: On the Iwasawa invariants of totally real number fields. Am. J. Math. 98, 263–284 (1976) Gross, B.H.: \(p\)-adic \(L\)-series at \(s=0\), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 979–994 (1982) Itoh, T.: On multiple \(\mathbb{Z}_p\)-extensions of imaginary abelian quartic fields. J. Number Theory 131, 59–66 (2011) Koike, M.: On the isomorphism classes of Iwasawa modules associated to imaginary quadratic fields with \(\lambda =2\). J. Math. Sci. Univ. Tokyo 6, 371–396 (1999) Kurihara, M.: On Brumer–Stark conjecture and Gross’ conjecture(in Japanese). In: Proceeding of the 20th Summer School on Number Theory—Stark’s Conjecture (2013). https://www.ma.noda.tus.ac.jp/u/ha/SS2012/Data/kurihara.pdf Lim, M.F., Murty, V.K.: The growth of fine Selmer groups. J. Ramanujan Math. Soc. 31, 79–94 (2016) Minardi, J.: Iwasawa modules for \(\mathbb{Z}_{p}^d\)-extensions of algebraic number fields. Thesis (Ph.D.) University of Washington (1986) Murakami, K.: On an upper bound of \(\lambda \)-invariants of \(\mathbb{Z}_p\)-extensions over an imaginary quadratic field. J. Math. Soc. Jpn. 71, 1005–1026 (2019) Ozaki, M.: Iwasawa invariants of \(\mathbb{Z}_{p}\)-extensions over an imaginary quadratic field. In: Miyake, K. (ed.) Class Field Theory—Its Centenary and Prospect Advanced Studies in Pure Mathematics, vol. 30, pp. 387–399. Mathematical Society of Japan, Tokyo (2001) Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d’Iwasawa (French). Mém. Soc. Math. France (N.S.) 17, 20 (1984) Rubin, K.: The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103, 25–68 (1991) Ventullo, K.: On the rank one abelian Gross–Stark conjecture. Comment. Math. Helv. 90, 939–963 (2015) Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83, 2nd edn. Springer, New York (1997) Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. 131, 493–540 (1990)