Galois $$E_6$$-Bundles over a Hyperelliptic Algebraic Curve
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, J.F.: Lectures on Exceptional Lie Groups. University of Chicago Press (1996)
Antón-Sancho, Á.: Principal $$\text{ Spin }$$-bundles and triality. Rev. Colombiana Mat. 49, 235–259 (2015). https://doi.org/10.15446/recolma.v49n2.60442
Antón-Sancho, Á.: The group of automorphisms of the moduli space of principal bundles with structure group $$F_4$$ and $$E_6$$. Rev. Un. Mat. Argentina 59(1), 33–56 (2018). https://doi.org/10.33044/revuma.v59n1a02
Antón-Sancho, Á.: Automorphisms of the moduli space of principal $$G$$-bundles induced by outer automorphisms of $$G$$. Math. Scand. 122(1), 53–83 (2018). https://doi.org/10.7146/math.scand.a-26348
Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1982). https://doi.org/10.1007/978-1-4612-2564-5_9
Basu, S., Pal, S.: Moduli space of parabolic vector bundles over hyperelliptic curves. Proc. Math. Sci. 128, 57 (2018). https://doi.org/10.1007/s12044-018-0438-8
Biswas, I., Gómez, T.L., Muñoz, V.: Automorphisms of moduli spaces of symplectic bundles. Int. J. Math. 23(5), 1250052 (2012). https://doi.org/10.1142/s0129167x12500528
Biswas, I., Gómez, T.L., Muñoz, V.: Automorphisms of moduli spaces of vector bundles over a curve. Expos. Math. 31(1), 73–86 (2013). https://doi.org/10.1016/j.exmath.2012.08.002
Corrigan, E., Hollowood, T.J.: A string construction of a commutative non-associative algebra related to the exceptional Jordan algebra. Phys. Lett. B 203(1–2), 47–51 (1988). https://doi.org/10.1016/0370-2693(88)91568-7
Donaldson, S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom. 18, 269–277 (1983). https://doi.org/10.4310/jdg/1214437664
Friedmann, R., Morgan, J.W., Witten, E.: Principal $$G$$-bundles over elliptic curves. Math. Res. Lett. 5(1), 97–118 (1998). https://doi.org/10.4310/mrl.1998.v5.n1.a8
Garcia-Prada, O., Ramanan, S.: Involutions and higher order automorphisms of Higgs bundle moduli spaces. Proc. Lond. Math. Soc. 119(3), 681–732 (2019). https://doi.org/10.1112/plms.12242
Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math. 79, 121–138 (1957). https://doi.org/10.2307/2372388
Hitchin, N.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55(3), 59–126 (1987). https://doi.org/10.1112/plms/s3-55.1.59
Hörmander, L.: An Introduction to Complex Analysis in Several Variables. Van Nostrand Reinhold Company (1996)
Kouvidakis, A., Pantev, T.: The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302, 225–269 (1995). https://doi.org/10.1007/bf01444495
Narasimhan, M.S., Ramanan, S.: Generalised Prym varieties as fixed points. J. Indian Math. Soc. (N. S.) 39, 1–19 (1975)
Narasimhan, M.S., Seshadri, C.S.: Stable and unitary bundles on a compact Riemann surface. Ann. Math. 82, 540–564 (1965). https://doi.org/10.2307/1970710
Oxbury, W., Ramanan, S.: Trigonal curves and Galois $$\text{ Spin }(8)$$-bundles (1999). arXiv:math/9907114v1
Pantilie, R.: On the infinitesimal automorphisms of principal bundles. Proc. Am. Math. Soc. 150, 191–200 (2022). https://doi.org/10.1090/proc/15723
Ramanan, S.: Orthogonal and spin bundles over hyperelliptic curves. Proc. Indian Acad. Sci. (Math. Sci.) 90, 151–166 (1981). https://doi.org/10.1007/BF02837285
Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975). https://doi.org/10.1007/bf01343949
Ramanathan, A.: Moduli for principal bundles over algebraic curves I. Proc. Indian Acad. Sci. (Math. Sci.) 106(3), 301–328 (1996). https://doi.org/10.1007/bf02867438
Ramanathan, A.: Moduli for principal bundles over algebraic curves II. Proc. Indian Acad. Sci. (Math. Sci.) 106(4), 421–449 (1996). https://doi.org/10.1007/bf02837697
Ramanathan, A., Subramanian, S.: Einstein-Hermitian connections on principal bundles and stability. J. Reine Angew. Math. 390, 21–31 (1988). https://doi.org/10.1515/crll.1988.390.21
Serman, O.: Moduli spaces of orthogonal and symplectic bundles over an algebraic curve. Compos. Math. 144, 721–733 (2008). https://doi.org/10.1112/s0010437x07003247
Springer, T.A., Veldkamp, F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics. Springer (2000)