Galois $$E_6$$-Bundles over a Hyperelliptic Algebraic Curve

Álvaro Antón‐Sancho1
1Department of Mathematics and Experimental Science, Fray Luis de León University College of Education, Catholic University of Ávila, Valladolid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, J.F.: Lectures on Exceptional Lie Groups. University of Chicago Press (1996)

Antón-Sancho, Á.: Principal $$\text{ Spin }$$-bundles and triality. Rev. Colombiana Mat. 49, 235–259 (2015). https://doi.org/10.15446/recolma.v49n2.60442

Antón-Sancho, Á.: The group of automorphisms of the moduli space of principal bundles with structure group $$F_4$$ and $$E_6$$. Rev. Un. Mat. Argentina 59(1), 33–56 (2018). https://doi.org/10.33044/revuma.v59n1a02

Antón-Sancho, Á.: Automorphisms of the moduli space of principal $$G$$-bundles induced by outer automorphisms of $$G$$. Math. Scand. 122(1), 53–83 (2018). https://doi.org/10.7146/math.scand.a-26348

Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A 308, 523–615 (1982). https://doi.org/10.1007/978-1-4612-2564-5_9

Basu, S., Pal, S.: Moduli space of parabolic vector bundles over hyperelliptic curves. Proc. Math. Sci. 128, 57 (2018). https://doi.org/10.1007/s12044-018-0438-8

Biswas, I., Gómez, T.L., Muñoz, V.: Automorphisms of moduli spaces of symplectic bundles. Int. J. Math. 23(5), 1250052 (2012). https://doi.org/10.1142/s0129167x12500528

Biswas, I., Gómez, T.L., Muñoz, V.: Automorphisms of moduli spaces of vector bundles over a curve. Expos. Math. 31(1), 73–86 (2013). https://doi.org/10.1016/j.exmath.2012.08.002

Corrigan, E., Hollowood, T.J.: A string construction of a commutative non-associative algebra related to the exceptional Jordan algebra. Phys. Lett. B 203(1–2), 47–51 (1988). https://doi.org/10.1016/0370-2693(88)91568-7

Donaldson, S.K.: A new proof of a theorem of Narasimhan and Seshadri. J. Differ. Geom. 18, 269–277 (1983). https://doi.org/10.4310/jdg/1214437664

Friedmann, R., Morgan, J.W., Witten, E.: Principal $$G$$-bundles over elliptic curves. Math. Res. Lett. 5(1), 97–118 (1998). https://doi.org/10.4310/mrl.1998.v5.n1.a8

Garcia-Prada, O., Ramanan, S.: Involutions and higher order automorphisms of Higgs bundle moduli spaces. Proc. Lond. Math. Soc. 119(3), 681–732 (2019). https://doi.org/10.1112/plms.12242

Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math. 79, 121–138 (1957). https://doi.org/10.2307/2372388

Hitchin, N.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55(3), 59–126 (1987). https://doi.org/10.1112/plms/s3-55.1.59

Hörmander, L.: An Introduction to Complex Analysis in Several Variables. Van Nostrand Reinhold Company (1996)

Kouvidakis, A., Pantev, T.: The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302, 225–269 (1995). https://doi.org/10.1007/bf01444495

Narasimhan, M.S., Ramanan, S.: Generalised Prym varieties as fixed points. J. Indian Math. Soc. (N. S.) 39, 1–19 (1975)

Narasimhan, M.S., Seshadri, C.S.: Stable and unitary bundles on a compact Riemann surface. Ann. Math. 82, 540–564 (1965). https://doi.org/10.2307/1970710

Oxbury, W., Ramanan, S.: Trigonal curves and Galois $$\text{ Spin }(8)$$-bundles (1999). arXiv:math/9907114v1

Pantilie, R.: On the infinitesimal automorphisms of principal bundles. Proc. Am. Math. Soc. 150, 191–200 (2022). https://doi.org/10.1090/proc/15723

Ramanan, S.: Orthogonal and spin bundles over hyperelliptic curves. Proc. Indian Acad. Sci. (Math. Sci.) 90, 151–166 (1981). https://doi.org/10.1007/BF02837285

Ramanathan, A.: Stable principal bundles on a compact Riemann surface. Math. Ann. 213, 129–152 (1975). https://doi.org/10.1007/bf01343949

Ramanathan, A.: Moduli for principal bundles over algebraic curves I. Proc. Indian Acad. Sci. (Math. Sci.) 106(3), 301–328 (1996). https://doi.org/10.1007/bf02867438

Ramanathan, A.: Moduli for principal bundles over algebraic curves II. Proc. Indian Acad. Sci. (Math. Sci.) 106(4), 421–449 (1996). https://doi.org/10.1007/bf02837697

Ramanathan, A., Subramanian, S.: Einstein-Hermitian connections on principal bundles and stability. J. Reine Angew. Math. 390, 21–31 (1988). https://doi.org/10.1515/crll.1988.390.21

Serman, O.: Moduli spaces of orthogonal and symplectic bundles over an algebraic curve. Compos. Math. 144, 721–733 (2008). https://doi.org/10.1112/s0010437x07003247

Springer, T.A., Veldkamp, F.D.: Octonions, Jordan Algebras and Exceptional Groups. Springer Monographs in Mathematics. Springer (2000)

Wells, R.O.: Differential Analysis on Complex Manifolds. Springer (1980)

Yokota, I.: Realizations of involutive automorphisms $$\sigma $$ and $$G^{\sigma }$$ of exceptional linear groups $$G$$, part I, $$G=G_2$$, $$F_4$$ and $$E_6$$. Tsukuba J. Math. 14(1), 185–223 (1990). https://doi.org/10.21099/tkbjm/1496161328