Gallium nitride materials - progress, status, and potential roadblocks

Proceedings of the IEEE - Tập 90 Số 6 - Trang 993-1005 - 2002
R.F. Davis1, A.M. Roskowski2, E.A. Preble1, J.S. Speck3, B. Heying4, J.A. Freitas5, E.R. Glaser5, W.E. Carlos5
1Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
2Intel Corporation, Portland, OR, USA
3Materials Department, University of California, Santa Barbara, CA, USA
4TRW Corporation, Redondo Beach, CA, USA
5Naval Research Laboratory, Inc., Washington D.C., DC, USA

Tóm tắt

Metal-organic vapor phase epitaxy (MOVPE) and molecular beam epitaxy (MBE) are the principal techniques for the growth and n-type (Si) and p-type (Mg) doping of III-nitride thin films on sapphire and silicon carbide substrates as well as previously grown GaN films. Lateral and pendeoepitaxy via MOVPE reduce significantly the dislocation density and residual strain in GaN and AlGaN films. However tilt and coalescence boundaries are produced in the laterally growing material. Very high electron mobilities in the nitrides have been realized in radio-frequency plasma-assisted MBE GaN films and in two-dimensional electron gases in the AlGaN/GaN system grown on MOVPE-derived GaN substrates at the crossover from the intermediate growth regime to the droplet regime. State-of-the-art Mg doping profiles and transport properties have been achieved in MBE-derived p-type GaN. The Mg-memory effect, and heterogeneous growth, substrate uniformity, and flux control are significant challenges for MOVPE and MBE, respectively. Photoluminescence (PL) of MOVPE-derived unintentionally doped (UID) heteroepitaxial GaN films show sharp lines near 3.478 eV due to recombination processes associated with the annihilation of free-excitons (FEs) and excitons bound to a neutral shallow donor (D/spl deg/X).

Từ khóa

#III-V semiconductor materials #Gallium nitride #Molecular beam epitaxial growth #Epitaxial growth #Epitaxial layers #Substrates #Aluminum gallium nitride #Electron mobility #Doping #Semiconductor thin films

Tài liệu tham khảo

10.1103/PhysRevB.48.15144 10.1016/S0921-5107(02)00007-7 10.1007/s11664-000-0118-0 meyer, 1999, magnetic resonance investigations of group-iii nitrides, Semiconductors and Semimetals, 57, 371, 10.1016/S0080-8784(08)62622-8 10.1063/1.122693 10.1007/s11664-999-0023-0 carlos, 1997, magnetic resonance studies of dopants and defects in gan-based materials and devices, Proceedings of the 7th International Conference on Shallow Level Centers in Semiconductors, 13 10.1557/PROC-449-149 10.1103/PhysRevB.63.165204 10.1063/1.370574 10.1103/PhysRevLett.85.2761 10.1103/PhysRev.114.1219 10.1063/1.363264 10.1063/1.365575 10.1002/1521-396X(200112)188:2<729::AID-PSSA729>3.3.CO;2-N 10.1103/PhysRevB.54.17745 10.1007/s11664-997-0163-z 10.1016/S0022-0248(98)00313-3 10.1016/0022-0248(93)90492-F 10.1016/0022-0248(87)90363-0 10.1063/1.121517 10.1143/JJAP.40.L13 10.1063/1.125257 10.1557/PROC-537-G3.2 10.1016/S0022-0248(01)01456-7 10.1063/1.123071 10.1002/1521-396X(200111)188:1<457::AID-PSSA457>3.0.CO;2-5 10.1063/1.1411985 10.1002/(SICI)1521-396X(199911)176:1<391::AID-PSSA391>3.0.CO;2-I 10.1016/S0080-8784(08)63055-0 10.1063/1.455418 10.1103/PhysRevB.48.17878 10.1063/1.120639 10.1103/PhysRevB.51.13326 jingxi, 2000, model development of gan movpe growth chemistry for reactor design, J Electron Mater, 29, 2, 10.1007/s11664-000-0085-5 beaumont, 1998, mg-enhanced lateral overgrowth of gan on patterned gan/sapphire substrate by selective metal organic vapor phase epitaxy, MRS Internet J Nitride Semicond Res, 3, 20, 10.1557/S1092578300000922 nakamura, 1998, ingan/gan/algan-based laser diodes with an estimated lifetime of longer than 10&thinsp;000 hours, MRS Bullet, 23, 37, 10.1557/S0883769400030414 10.1063/1.120164 10.1007/s11664-999-0239-z 10.1007/s11664-998-0393-8 10.1007/s11664-000-0068-6 10.1016/S0022-0248(01)00836-3 10.1103/PhysRevB.4.1211 10.1063/1.93952 10.1103/PhysRevB.60.1471 10.1103/PhysRevB.62.10151 10.1103/PhysRevB.59.13176 10.1016/S0038-1101(97)00103-2 10.1063/1.113820 10.1557/PROC-395-485 10.1007/BF02676809 10.1063/1.96549 van de walle, 1998, theory of doping and defects in iii&ndash;v nitrides, Journal of Crystal Growth, 189 190, 505, 10.1016/S0022-0248(98)00340-6 10.1063/1.117722 ptak, 2001, 43rd Electronic Materials Conf 10.1143/JJAP.28.L2112 10.1143/JJAP.31.L139 10.1063/1.116503 10.1063/1.120936 10.1063/1.117767 10.1007/s11664-998-0392-9 10.1143/JJAP.37.L398 10.1103/PhysRevLett.79.3030 10.1063/1.124666 watkins, 0 10.1103/PhysRevB.57.8957 10.1063/1.124609 10.1016/S0921-4526(99)00406-8 10.1016/S0022-0248(97)00069-9 10.1063/1.121166 10.1063/1.115806 10.1016/S0022-0248(96)00553-2 10.1063/1.96549 10.1143/JJAP.30.L1705 cardona, 1983, light scattering in solids, Topics in Applied Physics, 8, 10.1007/3-540-11913-2 10.1063/1.114642 10.1063/1.371396 haus, 0 10.1016/S0022-0248(01)01648-7 10.1143/JJAP.39.L1023 10.1063/1.1322370 10.1063/1.1305830 10.1063/1.125872 heying, 0