Galerkin mixed finite element method for parabolic p-biharmonic equation with memory term

Abderrazak Chaoui1, Manal Djaghout1
1Department of Mathematics, Faculty of Sciences, University 8 May 1945, Guelma, Algeria

Tóm tắt

A high-order parabolic p-biLaplace equation with memory term is studied. Using Roth’s method, we managed to find the approximate solution of the time semi-discretized problem. Some a priori estimates are proved, from which we extract convergence, existence, uniqueness and qualitative results in suitable functional spaces. A full discretization scheme using the mixed finite element method is introduced. Finally, a numerical experiment is presented to verify the convergence of the proposed scheme.

Tài liệu tham khảo

Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, New York (2003) Bahuguna, D., Raghavendra, V.: Rothe’s method to parabolic integrodifferential equations via abstract integrodifferential equations. Appl. Anal. 33, 153–167 (1989) Chaoui, A., Guezane-Lakoud, A.: Solution to an integrodifferential equation with integral condition. Appl. Math. Comput. 266, 903–908 (2015) Chaoui, A., Hallaci, A.: On the solution of a fractional diffusion integrodifferential equation with Rothe time discretization. Numer. Funct. Anal. Optim 39(6), 643–654 (2018) Cömert, T., Piskin, E.: Global existence and exponential decay of solutions for higher-order parabolic equation with logarithmic nonlinearity. Miskolc Math. Notes 23(2), 595–605 (2022) Djaghout, M., Chaoui, A., Zennir, K.: On discretization of the evolution p-biLaplace equation. Numer. Anal. Appl. 25(4), 371–383 (2022) El Khalil, A., Kellati, S., Touzani, A.: On the spectrum of the p-biharmonic operator. In: 2002-Fez Conference on Partial Differential Equations. Electronic Journal of Differential Equations, Conference 09, p. 161170 (2002) Guezane-Lakoud, A., Jasmati, M.S., Chaoui, A.: Rothe’s method for an integrodifferential equation with integral conditions. Nonl. Anal. 72, 1522–1530 (2010) Gupta, N., Maqbul, Md.: Solutions to Rayleigh–Love equation with constant coefficients and delay forcing term. Appl. Math. Comput. 355(3–4), 123–134 (2019). https://doi.org/10.1016/j.amc.2019.02.059 Gupta, N., Maqbul, Md.: Approximate solutions to Euler–Bernoulli beam type equation. Mediterr. J. Math. (2021). https://doi.org/10.1007/s00009-021-01833-2 Hao, A., Zhou, J.: Blowup, extinction and non-extinction for a nonlocal p-biharmonic parabolic equation. Appl. Math. Lett. 64, 198–204 (2017) Kacur, J.: Method of Rothe in evolution equations. In: Teubner Texte zur Mathematik, vol. 80. Teubner, Leipzig (1985) Lazer, A., McKenna, P.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32(4), 537–578 (1990) Lindqvist, P.: Notes on the p-Laplace Equation. Report. University of Jyväskylä Department of Mathematics and Statistics, 102 (2006) Maqbul, Md., Raheem, A.: Time-discretization schema for a semilinear pseudoparabolic equation with integral conditions. Appl. Numer. Math. 148, 18–27 (2020). https://doi.org/10.1007/s12591-017-0379-1 Maqbul, Md., Raheem, A.: Time-discretization schema for a semilinear pseudo-parabolic equation with integral conditions. Appl. Numer. Math. (2019). https://doi.org/10.1016/j.apnum.2019.09.002 Pişkin, E., Okutmuştur, B.: An Introduction to Sobolev Spaces. Bentham Science, Sharjah (2021) Sandri, D.: Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Model. Math. Anal. Numer. 27(2), 131–155 (1993) Theljani, A., Belhachmi, Z., Moakher, M.: High-order anisotropic diffusion operators in spaces of variable exponents and application to image inpainting and restoration problems. Nonl. Anal.: Real World Appl. 47, 251–271 (2019) Wang, J., Liu, C.: p-Biharmonic parabolic equation with logarithmic nonlinearity. Electron. J. Differ. Equ. 2019(8), 1–18 (2019). http://ejde.math.txstate.eduorhttp://ejde.math.unt.edu Zennir, K., Beniani, A., Bochra, B., Alkhalifa, L.: Destruction of solutions for class of wave \(p(x)\)-bi-Laplace equation with nonlinear dissipation. AIMS Math. 8(1), 285–294 (2023). https://doi.org/10.3934/math.2023013