Gaining ground: assays for therapeutics against botulinum neurotoxin
Tài liệu tham khảo
Simpson, 2004, Identification of the major steps in botulinum toxin action, Annu. Rev. Pharmacol. Toxicol., 44, 167, 10.1146/annurev.pharmtox.44.101802.121554
Montecucco, 2005, Botulinal neurotoxins: revival of an old killer, Curr. Opin. Pharmacol., 5, 274, 10.1016/j.coph.2004.12.006
Schantz, 1992, Properties and use of botulinum toxin and other microbial neurotoxins in medicine, Microbiol. Rev., 56, 80, 10.1128/MMBR.56.1.80-99.1992
Breidenbach, 2005, New insights into clostridial neurotoxin-SNARE interactions, Trends Mol. Med., 11, 377, 10.1016/j.molmed.2005.06.012
Wein, 2005, Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk, Proc. Natl. Acad. Sci. U. S. A., 102, 9984, 10.1073/pnas.0408526102
Arnon, 2001, Botulinum toxin as a biological weapon: medical and public health management, JAMA, 285, 1059, 10.1001/jama.285.8.1059
Foster, 2006, Botulinum neurotoxin - from laboratory to bedside, Neurotox Res., 9, 133, 10.1007/BF03033931
Dolly, 2009, Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics, Curr. Opin. Pharmacol., 9, 326, 10.1016/j.coph.2009.03.004
Truong, 2006, Botulinum toxin: clinical use, Parkinsonism Relat Disord, 12, 331, 10.1016/j.parkreldis.2006.06.002
Chen, 2009, Engineering botulinum neurotoxin to extend therapeutic intervention, Proc. Natl. Acad. Sci. U. S. A., 106, 9180, 10.1073/pnas.0903111106
Smith, 2009, Botulism and vaccines for its prevention, Vaccine, 27, D33, 10.1016/j.vaccine.2009.08.059
Horowitz, 2005, Botulinum toxin, Crit. Care Clin., 21, 825, 10.1016/j.ccc.2005.06.008
Brunger, 2008, Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins, Cell Mol. Life Sci., 65, 2296, 10.1007/s00018-008-8088-0
Dong, 2003, Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells, J. Cell. Biol., 162, 1293, 10.1083/jcb.200305098
Dong, 2006, SV2 is the protein receptor for botulinum neurotoxin A, Science, 312, 592, 10.1126/science.1123654
Rummel, 2007, Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept, Proc. Natl. Acad. Sci. U. S. A., 104, 359, 10.1073/pnas.0609713104
Bakry, 1991, Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin, J. Pharmacol. Exp. Ther., 258, 830
Kale, 2007, Synthesis of soluble multivalent glycoconjugates that target the Hc region of botulinum neurotoxin A, Bioorg. Med. Chem. Lett., 17, 2459, 10.1016/j.bmcl.2007.02.028
Simpson, 1983, Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins, J. Pharmacol. Exp. Ther., 225, 546
Simpson, 1994, Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins, J. Pharmacol. Exp. Ther., 269, 256
Keller, 2004, Uptake of botulinum neurotoxin into cultured neurons, Biochemistry, 43, 526, 10.1021/bi0356698
Sorensen, 2005, SNARE complexes prepare for membrane fusion, Trends Neurosci., 28, 453, 10.1016/j.tins.2005.06.007
Willis, 2008, The strange case of the botulinum neurotoxin: using chemistry and biology to modulate the most deadly poison, Angew. Chem. Int. Ed. Engl., 47, 8360, 10.1002/anie.200705531
Zuniga, 2008, A potent peptidomimetic inhibitor of botulinum neurotoxin serotype A has a very different conformation than SNAP-25 substrate, Structure, 16, 1588, 10.1016/j.str.2008.07.011
Schmidt, 2005, Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity, Biochemistry, 44, 4067, 10.1021/bi0477642
Schmidt, 1998, Type A botulinum neurotoxin proteolytic activity: development of competitive inhibitors and implications for substrate specificity at the S1’ binding subsite, FEBS Lett., 435, 61, 10.1016/S0014-5793(98)01041-2
Sukonpan, 2004, Synthesis of substrates and inhibitors of botulinum neurotoxin type A metalloprotease, J. Pept. Res., 63, 181, 10.1111/j.1399-3011.2004.00124.x
Shone, 2006, The 5th International Conference on Basic and Therapeutic Aspects of Botulinum and Tetanus Neurotoxins. Workshop review: assays and detection, Neurotox. Res., 9, 205, 10.1007/BF03033940
Schmidt, 2003, Fluorigenic substrates for the protease activities of botulinum neurotoxins, serotypes A, B, and F, Appl. Environ. Microbiol., 69, 297, 10.1128/AEM.69.1.297-303.2003
Gul, 2004, Inhibition of the protease activity of the light chain of type A botulinum neurotoxin by aqueous extract from stinging nettle (Urtica dioica) leaf, Basic Clin. Pharmacol. Toxicol., 95, 215, 10.1111/j.1742-7843.2004.pto950503.x
Adler, 2003, A capillary electrophoresis technique for evaluating botulinum neurotoxin B light chain activity, J. Protein Chem., 22, 441, 10.1023/B:JOPC.0000005459.00492.60
Anne, 2005, Partial protection against Botulinum B neurotoxin-induced blocking of exocytosis by a potent inhibitor of its metallopeptidase activity, Chembiochem, 6, 1375, 10.1002/cbic.200400398
Burnett, 2003, Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity, Biochem. Biophys. Res. Commun., 310, 84, 10.1016/j.bbrc.2003.08.112
Kalandakanond, 2001, Cleavage of intracellular substrates of botulinum toxins A, C and D in a mammalian target tissue, J. Pharmacol. Exp. Ther., 296, 749
Ferracci, 2005, Synaptic vesicle chips to assay botulinum neurotoxins, Biochem. J., 391, 659, 10.1042/BJ20050855
Marconi, 2008, A protein chip membrane-capture assay for botulinum neurotoxin activity, Toxicol. Appl. Pharmacol., 233, 439, 10.1016/j.taap.2008.09.005
Hines, 2008, Use of a recombinant fluorescent substrate with cleavage sites for all botulinum neurotoxins in high-throughput screening of natural product extracts for inhibitors of serotypes A, B and E, Appl. Environ. Microbiol., 74, 653, 10.1128/AEM.01690-07
Anne, 2001, High-throughput fluorogenic assay for determination of botulinum type B neurotoxin protease activity, Anal. Biochem., 291, 253, 10.1006/abio.2001.5028
Mangru, 2005, Integrated bioassays in microfluidic devices: botulinum toxin assays, J. Biomol. Screen., 10, 788, 10.1177/1087057105278927
Dong, 2004, Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells, Proc. Natl. Acad. Sci. U. S. A., 101, 14701, 10.1073/pnas.0404107101
Pires-Alves, 2009, Tandem fluorescent proteins as enhanced FRET-based substrates for botulinum neurotoxin activity, Toxicon, 53, 392, 10.1016/j.toxicon.2008.12.016
Bagramyan, 2008, Attomolar detection of botulinum toxin type A in complex biological matrices, PLoS ONE, 3, e2041, 10.1371/journal.pone.0002041
Poras, 2009, Detection and quantification of botulinum neurotoxin type a by a novel rapid in vitro fluorimetric assay, Appl. Environ. Microbiol., 75, 4382, 10.1128/AEM.00091-09
Cheng, 2009, Antibody protection against botulinum neurotoxin intoxication in mice, Infect. Immun., 77, 4305, 10.1128/IAI.00405-09
Boyer, 2005, From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry, Anal. Chem., 77, 3916, 10.1021/ac050485f
Kalb, 2006, The use of Endopep-MS for the detection of botulinum toxins A, B, E and F in serum and stool samples, Anal. Biochem., 351, 84, 10.1016/j.ab.2006.01.027
Gonzalez, 1998, Intracellular detection assays for high-throughput screening, Curr. Opin. Biotechnol., 9, 624, 10.1016/S0958-1669(98)80141-9
Cai, 2007, Botulism diagnostics: from clinical symptoms to in vitro assays, Crit. Rev. Microbiol., 33, 109, 10.1080/10408410701364562
Eubanks, 2005, Vitamin B2-mediated cellular photoinhibition of botulinum neurotoxin A, FEBS Lett., 579, 5361, 10.1016/j.febslet.2005.08.072
Hall, 2004, Novel application of an in vitro technique to the detection and quantification of botulinum neurotoxin antibodies, J. Immunol. Methods, 288, 55, 10.1016/j.jim.2004.02.011
Pellett, 2007, A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies, FEBS Lett., 581, 4803, 10.1016/j.febslet.2007.08.078
Foran, 2003, Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons, J. Biol. Chem., 278, 1363, 10.1074/jbc.M209821200
Sheridan, 2005, Primary cell culture for evaluation of botulinum neurotoxin antagonists, Toxicon, 45, 377, 10.1016/j.toxicon.2004.11.009
Stahl, 2007, Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery, J. Biomol. Screen., 12, 370, 10.1177/1087057106299163
Nuss, 2010, Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies, J. Biomol. Screen., 15, 42, 10.1177/1087057109354779
Fang, 2006, A yeast assay probes the interaction between botulinum neurotoxin serotype B and its SNARE substrate, Proc. Natl. Acad. Sci. U. S. A., 103, 6958, 10.1073/pnas.0510816103
Thyagarajan, 2009, Capsaicin protects mouse neuromuscular junctions from the neuroparalytic effects of botulinum neurotoxin A, J. Pharmacol. Exp. Ther., 331, 361, 10.1124/jpet.109.156901
Yoneda, 2005, Comparison of the therapeutic indexes of different molecular forms of botulinum toxin type A, Eur. J. Pharmacol., 508, 223, 10.1016/j.ejphar.2004.12.007
Roxas-Duncan, 2009, Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A, Antimicrob Agents Chemother., 53, 3478, 10.1128/AAC.00141-09
Dodd, 2005, Botulinum neurotoxin type A causes shifts in myosin heavy chain composition in muscle, Toxicon, 46, 196, 10.1016/j.toxicon.2005.03.022
Keller, 2006, Recovery from botulinum neurotoxin poisoning in vivo, Neuroscience, 139, 629, 10.1016/j.neuroscience.2005.12.029
Straughan, 2006, Progress in applying the Three Rs to the potency testing of Botulinum toxin type A, Altern. Lab. Anim., 34, 305, 10.1177/026119290603400314
Pickett, 2008, The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations, Toxicon, 52, 455, 10.1016/j.toxicon.2008.06.021
Hubbell, 2000, Identifying conformational changes with site-directed spin labeling, Nat. Struct. Biol., 7, 735, 10.1038/78956
Mollaaghababa, 2000, Time-resolved site-directed spin-labeling studies of bacteriorhodopsin: loop-specific conformational changes in M, Biochemistry, 39, 1120, 10.1021/bi991963h
Steinhoff, 1994, Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin, Science, 266, 105, 10.1126/science.7939627
Stoevesandt, 2009, Protein microarrays: high-throughput tools for proteomics, Expert Rev. Proteomics, 6, 145, 10.1586/epr.09.2