Gabor systems and almost periodic functions

Applied and Computational Harmonic Analysis - Tập 42 - Trang 65-87 - 2017
Paolo Boggiatto1, Carmen Fernández2, Antonio Galbis2
1Department of Mathematics, University of Torino, Via Carlo Alberto 10, 10123 Torino, Italy
2Departament d'Anàlisi Matemàtica, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain

Tài liệu tham khảo

Ali, 1993, Continuous frames in Hilbert spaces, Ann. Physics, 222, 1, 10.1006/aphy.1993.1016 Besicovitch, 1954 Christensen, 2003 Corduneanu, 2009 Corduneanu, 1989 Fournier, 1985, Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13, 1, 10.1090/S0273-0979-1985-15350-9 Gabardo, 2003, Frames associated with measurable spaces, Adv. Comput. Anal., 16, 174 Galindo, 2004, Some remarks on “On the windowed Fourier transform and wavelet transform of almost periodic functions”, Appl. Comput. Harmon. Anal., 16, 174, 10.1016/j.acha.2004.03.002 Gröchenig, 2001 Gröchenig, 2002, Gabor analysis in weighted amalgam spaces, Sampl. Theory Signal Image Process., 1, 225, 10.1007/BF03549380 Heil, 2011 Jarchow, 1981 Kaiser, 1994 Kim, 2013, Representations of almost periodic functions using generalized shift-invariant systems in Rd, J. Fourier Anal. Appl., 19, 857, 10.1007/s00041-013-9270-9 Kim, 2009, Time–frequency representations of almost periodic functions, Constr. Approx., 29, 303, 10.1007/s00365-007-9000-0 Levitan, 1982 Oliaro, 2012, Almost periodic pseudo-differential operators and Gevrey classes, Ann. Math., 191, 725 Partington, 2001, On the windowed Fourier transform and wavelet transform of almost periodic functions, Appl. Comput. Harmon. Anal., 10, 45, 10.1006/acha.2000.0326 Ron, 1995, Frames and stable bases for shift-invariant subspaces of L2(Rd), Canad. J. Math., 45, 1051, 10.4153/CJM-1995-056-1 Ron, 1997, Weyl–Heisenberg frames and Riesz basis in L2(Rd), Duke Math. J., 89, 237, 10.1215/S0012-7094-97-08913-4 Ron, 2005, Generalized shift-invariant systems, Constr. Approx., 22, 1, 10.1007/s00365-004-0563-8 Shubin, 1974, Differential and pseudo-differential operators in spaces of almost periodic functions, Mathematics of the USSR. Sbornik, 24, 547, 10.1070/SM1974v024n04ABEH001923 Unalmis, 2013, Generalized frame in the space of strong limit power functions, Mediterr. J. Math., 10, 321, 10.1007/s00009-012-0191-7