GRY79 encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice
Tóm tắt
The
green
-
revertible yellow79
mutant resulting from a single-base mutation suggested that the
GRY79
gene encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice.
Functional studies of metallo-β-lactamases and trihelix transcription factors in higher plants remain very sparse. In this study, we isolated the green-revertible yellow79 (gry79) mutant in rice. The mutant developed yellow-green leaves before the three-leaf stage but recovered to normal green at the sixth-leaf stage. Meanwhile, the mutant exhibited reduced level of chlorophylls and arrested development of chloroplasts in the yellow leaves. Genetic analysis suggested that the mutant phenotype was controlled by a single recessive nuclear gene on rice chromosome 2. Map-based cloning revealed that the candidate gene was Os02g33610 encoding a putative metallo-β-lactamase-trihelix chimera. In the gry79 mutant, a single-base mutation occurred in coding region of the gene, resulting in an amino acid change in the encoded protein. Furthermore, the mutant phenotype was rescued by transformation with the wild-type gene. Therefore, we have confirmed that the gry79 mutant phenotype resulted from a single-base mutation in GRY79 (Os02g33610) gene, suggesting that the gene encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice. In addition, we considered that the gry79 mutant gene could be applicable as a leaf-color marker gene for efficient identification and elimination of false hybrids in commercial hybrid rice production.