GPR37 promotes the malignancy of lung adenocarcinoma via TGF-β/Smad pathway

Walter de Gruyter GmbH - Tập 16 Số 1 - Trang 024-032 - 2020
Jian Wang1, Min Xu2, Dandan Li3, Wujikenayi Abudukelimu1, Xiu-Hong Zhou1
1Department of Respiration, Midong Branch of People’s Hospital of Xinjiang Autonomous Region , 1302-17 Midong South Road , Urumqi , Xinjiang , People's Republic of China
2Department of Medical, Midong Branch of People’s Hospital of Xinjiang Autonomous Region , Urumqi , Xinjiang , People's Republic of China
3Department of Endocrinology, Midong Branch of People’s Hospital of Xinjiang Autonomous Region , Xinjiang , Urumqi , People's Republic of China

Tóm tắt

Abstract This paper aimed to research the function and in-depth mechanism of GPR37 in lung adenocarcinoma (LUAD). Herein, based on TCGA and Oncomine databases, we revealed that GPR37 was expressed at high levels in LUAD, and upregulation of GPR37 was related to the poor outcomes. Furthermore, biological function experiments in vitro were utilized to assess whether GPR37 impacts malignant phenotype of LUAD cells. Gain- or loss-of-function assays indicated that the upregulation of GPR37 contributed to improving the proliferation, migration, and invasion of LUAD cells in vitro, while knockdown of GPR37 can inhibit the malignant biological behaviors. Then, we found that depletion of GPR37 resulted in a decrease in the expression of TGF-β1 as well as the extents of Smad2 and Smad3 phosphorylation, while overexpression of GPR37 presented opposite outcomes. Altogether, our findings indicated that GPR37 is a potential oncogene of LUAD, and its promoting effects on the malignant progression of LUAD may be realized via TGF-β/Smad pathway.

Từ khóa


Tài liệu tham khảo

Torre LA, Siegel RL, Jemal A. Lung Cancer Statistics. Adv Exp Med Biol. 2016;893:1–19.

Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat Rev Cancer. 2014;14:535–46.

DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics. CA Cancer J Clin. 2014;64(4):252–71.

Troy B. Targeted cancer therapy: The next generation of cancer treatment. Curr Drug Discovery Technol. 2015;12:3–20.

Jacobson BC. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350:2008.

Chia PL, Mitchell P, Dobrovic A, John T. Prevalence and natural history of ALK positive non-small-cell lung cancer and the clinical impact of targeted therapy with ALK inhibitors. Clin Epidemiol. 2014;6:423–32.

Hauser AS, Chavali S, Masuho I, Jahn LJ, Babu MM. Pharmacogenomics of GPCR drug targets. Cell. 2017;172:41–54:e19.

Lappano R,Maggiolini M. Pharmacotherapeutic targeting of g protein-coupled receptors in oncology: Examples of approved therapies and emerging concepts. Drugs. 2017;77:951–65.

Lynch JR, Wang JY. G Protein-coupled receptor signaling in stem cells and cancer. Int J Mol Sci. 2016;17:5.

Marazziti D, Gallo A, Golini E, Matteoni R, Tocchini-Valentini GP. Molecular cloning and chromosomal localization of the mouse Gpr37 gene encoding an orphan G-protein-coupled peptide receptor expressed in brain and testis. Genomics. 1998;53:315–24.

Wang H, Hu L, Zang M, Zhang B, Duan Y, Fan Z, et al. REG4 promotes peritoneal metastasis of gastric cancer through GPR37. Oncotarget. 2016;7:27874–88.

Huang X, Wang Y, Nan X, He S, Xu X, Zhu X, et al. The role of the orphan G protein-coupled receptor 37 (GPR37) in multiple myeloma cells. Leuk Res. 2014;38:225–35.

Liu F, Zhu C, Huang X, Cai J, Wang H, Wang X, et al. A low level of GPR37 is associated with human hepatocellular carcinoma progression and poor patient survival. Pathol Res Pract. 2014;210:885–92.

Massague J. TGFbeta in Cancer. Cell. 2008;134:215–30.

Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.

Ikushima H, Miyazono K. TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.

Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol. 2013;2:47–63.

Risolino M, Mandia N, Iavarone F, Dardaei L, Longobardi E, Fernandez S, et al. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci U S A. 2014;111:E3775–84.

Yu JR, Tai Y, Jin Y, Hammell MC, Wilkinson JE, Roe JS, et al. TGF-β/SMAD signaling through DOCK4 facilitates lung adenocarcinoma metastasis. Genes Dev. 2015;29:250–61.

Cao L, Qi L, Zhang L, Song W, Yu Y, Xu C, et al. Human nonsense-mediated RNA decay regulates EMT by targeting the TGF-ß signaling pathway in lung adenocarcinoma. Cancer Lett. 2017;403:246–59.

Yan M, Li H, Zhu M, Zhao F, Zhang L, Chen T, et al. G Protein-coupled receptor 87 (GPR87) promotes the growth and metastasis of CD133 + cancer stem-like cells in hepatocellular carcinoma. PLoS One. 2013;8:4.

Moreno M, Pedrosa L, Paré L, Pineda E, Bejarano L, Martínez J, et al. GPR56/ADGRG1 inhibits mesenchymal differentiation and radioresistance in glioblastoma. Cell Rep. 2017;21:2183–97.

Millar MW, Corson N, Xu L. The adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits cell-extracellular matrix signaling to prevent metastatic melanoma growth. Front Oncol. 2018;8:8.

Pabst C, Bergeron A, Lavallée VP, Yeh J, Gendron P, Norddahl GL, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood. 2016;127:2018–27.

Wang F, Zhao N, Gao G, Deng HB, Wang ZH, Deng LL, et al. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J Cancer Res Clin Oncol. 2020;146:2851–9.

Labbé C, Cabanero M, Korpanty GJ, Tomasini P, Doherty MK, Mascaux C, et al. Prognostic and predictive effects of TP53 co-mutation in patients with EGFR-mutated non-small cell lung cancer (NSCLC). Lung Cancer. 2017;111:23–9.

Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.

Inman GJ. Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev. 2011;21:93–9.

Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-β: Duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106:djt369.

Meulmeester E, Dijke PT. The dynamic roles of TGF-? in cancer. J Pathol. 2011;223:205–18.

Markell LM, Pérez-Lorenzo R, Masiuk KE, Kennett MJ, Glick AB. Use of a TGF type I receptor inhibitor in mouse skin carcinogenesis reveals a dual role for TGF signaling in tumor promotion and progression. Carcinogenesis. 2010;31:2127–35.

Bachman KE, Park BH. Duel nature of TGF-beta signaling: Tumor suppressor vs tumor promoter. Curr Opin Oncol. 2005;17:49–54.

Massagué J, Chen Y. Controlling TGF-beta signaling. Genes Dev. 2000;14:627.

Jiang L, Wang R, Fang L, Ge X, Chen L, Zhou M, et al. HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Theranostics. 2019;9:2460–74.

Kunita A, Morita S, Irisa TU, Goto A, Niki T, Takai D, et al. MicroRNA-21 in cancer-associated fibroblasts supports lung adenocarcinoma progression. Sci Rep. 2018;8:8838.

Marini KD, Croucher DR, Mccloy RA, Vaghjiani V, Gonzalez-Rajal A, Hastings JF, et al. Inhibition of activin signaling in lung adenocarcinoma increases the therapeutic index of platinum chemotherapy. Sci Transl Med. 2018;10:451.