GLUTATHIONE TRANSFERASES

Annual Review of Pharmacology and Toxicology - Tập 45 Số 1 - Trang 51-88 - 2005
John D. Hayes1, Jack U. Flanagan1, Ian R. Jowsey1
1Biomedical Research Center, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom;, ,

Tóm tắt

▪ Abstract  This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous α,β-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor γ (PPARγ) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-κB (NF-κB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.

Từ khóa


Tài liệu tham khảo

Keen JH, 1978, J. Biol. Chem., 253, 5654, 10.1016/S0021-9258(17)30317-4

10.3109/10409239509083491

10.1021/tx960072x

10.1080/10715769900300851

10.1042/bj3600001

10.1021/bi035832z

10.1042/bj20031656

10.1110/ps.8.3.689

10.1021/bi001814v

10.1016/S0167-4838(01)00311-9

10.1006/abbi.1999.1361

10.1006/abbi.2000.2125

10.1006/taap.1996.0234

10.1074/jbc.273.1.329

10.1074/jbc.M001706200

10.1074/jbc.M201137200

10.1021/tx010052h

Evans JF, 1991, Mol. Pharmacol., 40, 22

10.1254/jjp.78.11

10.1073/pnas.96.13.7220

Ruscoe JE, 2001, J. Pharmacol. Exp. Ther., 298, 339

10.1042/bj3590295

10.1007/978-3-662-08818-0_2

10.1042/bj20030184

10.1074/jbc.M111548200

10.1016/S0891-5849(03)00102-3

10.1101/gad.1107803

10.1104/pp.127.1.159

10.1016/S1534-5807(03)00323-X

10.1046/j.1365-2443.2002.00561.x

10.1007/s003600050129

10.1016/j.bbamcr.2004.02.003

10.2174/1389200043489199

10.1074/jbc.M009400200

10.1002/1098-2744(200011)29:3<170::AID-MC6>3.0.CO;2-W

10.1124/dmd.30.12.1300

10.1021/ja030396p

10.1016/S0006-2952(01)00846-2

10.1093/toxsci/kfh118

10.1093/toxsci/kfh152

Kelly VP, 2000, Cancer Res., 60, 957

10.1021/tx970099w

10.1093/carcin/19.9.1685

10.1021/tx025519i

10.1016/S0027-5107(01)00187-7

10.1021/tx010019v

10.1021/tx034157r

10.1016/S0006-2952(00)00526-8

10.1146/annurev.pharmtox.38.1.501

10.1021/jm00036a016

Morgan AS, 1998, Cancer Res., 58, 2568

Rosen LS, 2003, Clin. Cancer Res., 9, 1628

10.1124/mol.65.5.1070

10.1172/JCI200318022

10.1042/bj3320097

10.1006/taap.2002.9450

10.1016/j.abb.2004.02.002

10.1074/jbc.272.8.4763

10.1042/bj3300175

10.1042/bj3490729

10.1073/pnas.0400181101

10.1006/bbrc.2000.3087

10.1074/jbc.M104539200

10.1016/S0092-8674(00)80374-8

10.1042/bj3590507

10.1023/A:1007579507804

10.1016/S1388-1981(03)00092-1

10.1021/tx9601770

10.1021/bi027347u

10.1021/bi035936+

10.1016/j.bbrc.2003.11.068

10.1128/MCB.24.1.36-45.2004

10.1074/jbc.M300931200

10.1073/pnas.0307301101

10.1038/47520

10.1016/S0163-7827(03)00014-6

10.1093/emboj/cdg412

10.1016/S0098-2997(03)00017-7

10.1007/978-1-4615-4735-8_15

10.1161/01.RES.0000119171.44657.45

10.1042/bj20031049

10.1186/1471-2164-4-35

10.1074/jbc.275.5.3296

10.1021/bi991714t

10.1097/00008571-200206000-00003

10.1006/bbrc.2001.4707

10.1074/jbc.M008212200

10.1074/jbc.M005561200

10.1074/jbc.M203642200

10.1093/emboj/18.5.1321

10.1006/abbi.2001.2352

10.1042/bj20020533

10.1074/jbc.M301807200

10.1074/jbc.274.8.5131

10.1074/jbc.M107804200

10.1074/jbc.M007874200

10.1074/jbc.M306630200

10.1093/molbev/msh013

10.1042/bj20030415

10.1074/jbc.M313357200

10.1177/002215540405200509

10.1006/abbi.2001.2629

10.1007/s00249-002-0219-1

10.1074/jbc.M308444200

10.1074/jbc.272.36.22934

10.1016/j.bbrc.2003.10.115

10.1074/jbc.M303227200

10.1073/pnas.0308523101

10.1159/000028396

10.2165/00129785-200303030-00002

10.1002/biof.5520170112

10.1093/carcin/23.8.1343

Hashibe M, 2003, Cancer Epidemiol. Biomarkers Prev., 12, 1509

van Lieshout EMM, 1999, Cancer Res., 59, 586

10.1158/0008-5472.CAN-03-2861

10.1097/00008571-200008000-00009

10.1093/jnci/94.12.936

10.1182/blood-2003-02-0444

10.1073/pnas.191211198

10.1002/art.10955

10.1016/S0140-6736(03)15262-2

Romieu I, 2004, Thorax, 59, 8

10.1046/j.0022-0477.2001.01261.x

10.1385/1-59259-832-3:083

10.1097/00008571-200303000-00003

10.1097/00008571-200401000-00001

10.1097/00008571-200401000-00004

10.1097/00008571-200401000-00005

10.1007/s100380170026

10.1007/s00439-003-0980-y

10.1136/thorax.58.5.417

10.1038/ng1311

Pearson WR, 1988, J. Biol. Chem., 263, 13324, 10.1016/S0021-9258(18)37708-1

10.1042/bj20020320

Mouse Glutathione Transferase Nomenclature. http://www.people.virginia.edu/∼wrp/gst_mouse.html

10.1016/j.taap.2003.10.001

10.1073/pnas.051632198

McMahon M, 2001, Cancer Res., 61, 3299

10.1042/bj20030754

Rushmore TH, 1991, J. Biol. Chem., 266, 11632, 10.1016/S0021-9258(18)99004-6

10.1016/S0378-1119(02)00788-6

10.1146/annurev.pharmtox.43.100901.140229

Tchaikovskaya T, 2002, Neural Plast., 9, 119

10.1073/pnas.95.9.5275

10.1074/jbc.M301211200

10.1073/pnas.220176997

10.1254/fpj.123.5

10.1128/MCB.22.13.4943-4951.2002

10.1016/S0002-9440(10)63332-9

10.1021/tx025503s

10.1084/jem.185.6.1065

10.1074/jbc.M103562200

10.1073/pnas.1332766100

10.1038/nn1137

Toba G, 2000, Drosophila melanogaster. Gene, 253, 179

10.1074/jbc.M310470200

McLeod R, 1997, Cancer Res., 57, 4257

10.1002/j.1460-2075.1990.tb08219.x

10.1042/bj3180075

10.1074/jbc.275.17.13000

10.1016/S0378-1119(01)00473-5

10.1042/bj20011756

10.1023/A:1020600509965

10.1124/mol.64.5.1018

10.1093/carcin/bgh023

10.1042/bst0280033

Thimmulappa RK, 2002, Cancer Res., 62, 5196

10.1074/jbc.M211898200

10.1038/263701a0

10.1042/bj20031948

10.1074/jbc.M211558200