GDF11 protein as a geroprotector

Biology Bulletin Reviews - Tập 6 - Trang 141-148 - 2016
V. Kh. Khavinson1,2,3, B. I. Kuznik4, S. I. Tarnovskaya2, N. S. Linkova1,2,5
1Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg Institute for Bioregulation and Geronotology, St. Petersburg, Russia
3Mechnikov Northwestern State Medical University, St. Petersburg, Russia
4Chita State Medical Academy, Chita, Russia
5Peter the Great St. Petersburg State Polytechnical University, St. Petersburg, Russia

Tóm tắt

GDF11 protein, the growth differentiation factor 11, which belongs to the TGF-β superfamily (transforming growth factor β), shows marked geroprotective effects on the cardiovascular and nervous systems. The cardioprotective and myoprotective effects of the GDF11 protein are associated with its regulation of several signaling molecules, including the MAPK–p38–mioglianin pathway. GDF11 neuroprotective action is associated with the regulation of proliferation and differentiation of brain neurons by means of changing the activity of the p57 (Kip2) and p27 (Kip1) transcription factors. GDF11 may be considered a potential target for geroprotector drugs, as was demonstrated in the case of the Glu-Asp-Arg peptide possessing similar neuroprotective and myoprotective properties as GDF11. For the Glu-Asp-Arg, Ala-Glu-AspGly, and Lys-Glu peptides, binding sites were found in the promoter region of GDF11: the CCTGC, ATTTC, and GCAG motifs, respectively.

Tài liệu tham khảo

Andersen, R.E. and Lim, D.A., An ingredient for the elixir of youth, Cell Res., 2014, vols. 1–2, pp. 1345–1356. Anisimov, V.N. and Khavinson, V.K., Peptide bioregulation of aging: results and prospects, Biogerontology, 2010, vol. 11, pp. 139–149. Arutjunyan A., Kozina L., Stvolinskiy S., et al., Pinealon protects the rat offspring from prenatal hyperhomocysteinemia, Int. J. Clin. Exp. Med., 2012, vol. 5, no. 2, pp. 179–185. Balashova, S.N., Zhernakov, G.L., and Dudkov, A.V., Implementation of peptide bioregulators for elderly people with psychoemotional disorders, Usp. Gerontol., 2008, vol. 21, no. 3, pp. 448–452. Bitto, A. and Kaeberlein, M., Rejuvenation: it’s in our blood, Cell Metab., 2014, vol. 20, no. 1, pp. 2–4. Brack, A.S., Ageing of the heart reversed by youthful systemic factors! EMBO J., 2013, vol. 32, no. 16, pp. 2189–2190. Demontis, F., Patel, V.K., Swindell, W.R., and Perrimon, N., Intertissue control of the nucleolus via a myokinedependent longevity pathway, Cell Rep., 2014, vol. 7, no. 5, pp. 1481–1494. Donskov, S.I. and Yagodinskii, V.N., Last days of A.A. Bogdanov: chronicle of tragedy, Vestn. Sluzhby Krovi Ross., 2006, vol. 1, pp. 1–8. Dußsiot, M., Maciel, T.T., Fricot, A., et al., An activin receptor IIA ligand trap corrects ineffective erythropoiesis in ß-thalassemia, Nat. Med., 2014, vol. 20, no. 4, pp. 398–407. Gokoffski, K.K., Wu, H.H., Beites, C.L., et al., Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate, Development, 2011, vol. 138, no. 19, pp. 4131–4142. Katsimpardi, L., Litterman, N.K., Schein, P.A., et al., Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors, Science, 2014, vol. 344, pp. 630–634. Kawauchi, S., Kim, J., Santos, R., et al., Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11, Development, 2009, vol. 136, no. 9, pp. 1453–1464. Khavinson, V.Kh., Grigoriev, E.I., Malinin, V.V., and Ryzhak, G.A., EU Patent EA 010157, 2008. Khavinson, V.Kh., Kuznik, B.I., Tarnovskaya, S.I., and Linkova, N.S., Peptides and CCL11 and HMGB1 as molecular markers of aging: literature review and own data, Adv. Gerontol., 2015, vol. 5, no. 3, pp. 133–140. Khavinson, V.Kh., Lin’kova, N.S., Tarnovskaya, S.I., Umnov, R.S., Elashkina, E.V., and Durnova, A.O., Short peptides stimulate serotonin expression in cells of brain cortex, Bull. Exp. Biol. Med., 2014, vol. 157, no. 1, pp. 77–80. Khavinson, V., Ribakova, Y., Kulebiakin, K., et al., Pinealon increases cell viability by supression of free radical levels and activating proliferative processes, Rejuven Res., 2011, vol. 14, no. 5, pp. 535–541. Khavinson, V.K., Tarnovskaya, S.I., Linkova, N.S., et al., Short cell-penetrating peptides: a model of interactions with gene promoter sites, Bull. Exp. Biol. Med., 2013, vol. 154, no. 3, pp. 403–410. Khavinson, V.Kh., Trofimova, S.V., and Viner, I.A., Metodika povysheniya rezervnykh vozmozhnostei organizma sportsmenov vysokoi kvalifikatsii, spetsializiruyushchikhsya v slozhnokoordinatsionnykh vidakh sporta, s pomoshch’yu peptidnykh bioregulyatorov. Metodicheskie rekomendatsii (A Method for Improvement of Reserves of Organisms of Sportsmen Specializing in Complex Sport Types Using Peptide Bioregulators: Methodological Recommendations), St. Petersburg: Inst. Bioregul. Gerontol., 2012. Kim, J., Wu, H.-H., Lander, A.D., et al., GDF11 controls the timing of progenitor cell competence in developing retina, Science, 2005, vol. 308, pp. 1927–1930. Kolchinskaya, A.Z., Kislorod. Fiziologicheskoe sostoyanie. Rabotosposobnost’ (Oxygen. Physiological State. Workability), Kyiv: Naukova Dumka, 1991. Lach-Trifilieff, E., Minetti, G.C., Sheppard, K., et al., An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy, Mol. Cell. Biol., 2014, vol. 34, no. 4, pp. 606–618. Laviano, A., Young blood, N. Engl. J. Med., 2014, vol. 371, pp. 573–575. Loffredo, F.S., Steinhauser, M.L., Jay, S.M., et al., Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy, Cell, 2013, vol. 153, no. 4, pp. 828–839. Morozov, V.G., Ryzhak, G.A., Malinin, V.V., and Rutkovskaya, V.N., Tsitogeny. Biologicheski aktivnye dobavki k pishche. Metodicheskie rekomendatsii (Cytogenes. Biological Active Supplements to Food: Methodological Recommendations), St. Petersburg: Kosta, 2011. Nomura, T., Ueyama, T., Ashihara, E., et al., Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-beta family signaling, Biochem. Biophys. Res. Comm., 2008, vol. 365, no. 4, pp. 863–869. Pottgiesser, T., Sottas, P.-E., Echteler, T., et al., Detection of autologous blood doping with adaptively evaluated biomarkers of doping: a longitudinal blinded study, Transfusion, 2011, vol. 51, no. 8, pp. 1707–1715. Shi, Y. and Liu, J.-P., Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord, J. Neurosci., 2011, vol. 31, no. 3, pp. 883–893. Sinha, M., Jang, Y.C., Oh, J., et al., Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle, Science, 2014, vol. 344, pp. 649–652. Suragani, R., Cadena, S.M., Cawley, S.M., et al., Transforming growth factor-ß superfamily ligand trap ACE536 corrects anemia by promoting late-stage erythropoiesis, Nat. Med., 2014, vol. 20, no. 4, pp. 408–414. Villeda, S.A., Luo, J., Mosher, K.I., et al., The ageing systemic milieu negatively regulates neurogenesis and cognitive function, Nature, 2011, vol. 477, pp. 90–94. Villeda, S.A., Plambeck, K.E., Middeldorp, J., et al., Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice, Nat. Med., 2014, vol. 20, no. 6, pp. 659–663. Williams, G., Zentar, M.P., Gajendra, S., et al., Transcriptional basis for the inhibition of neural stem cell proliferation and migration by the TGF-ß-family member GDF11, PLoS One, 2013, vol. 8, no. 11. p. e78478. Wu, H.H., Ivkovic, S., Murray, R.C., et al., Autoregulation of neurogenesis by GDF11, Neuron, 2003, vol. 37, no. 2, pp. 197–207.