GD3 Expression in CHO-K1 Cells Increases Growth Rate, Induces Morphological Changes, and Affects Cell-Substrate Interactions

Neurochemical Research - Tập 27 - Trang 1421-1429 - 2002
Jose L. Daniotti1, Adolfo R. Zurita1, Vera M. T. Trindade2, Hugo J. F. Maccioni1
1CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
2Dep. Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil

Tóm tắt

We have generated a panel of CHO-K1 cell clones with different glycolipid compositions by stable transfection of appropriate glycosyltransferases and studied the morphological and growth phenotype of a clone stably expressing Sial-T2. Compared with the GM3 expressing parental cells, Sial-T2 transfectants show low expression of GM3 and neo expression of GD3 and GT3. These cells show about 60% reduction of the mean cell area, and about 2-fold increase of the mean colony area and growth rate. Cells over expressing Sial-T2 showed a flattened appearance, and with time in culture they detached from the substrate leaving adhered material that was GD3 immunoreactive. No apoptotic or proteome differences could be detected in the Sial-T2 transfectants. Thus, increased expression of GD3 and GT3 influence parameters of growth and social behavior of CHO-K1 cells. However, the molecular and cellular basis underlying these influences requires further investigation.

Tài liệu tham khảo

Svennerholm, L. 1963. Chromatographic separation of human brain gangliosides. J. Neurochem. 10:613-623. Ledeen, R. W. 1984. Biology of gangliosides: neuritogenic and neuronotrophic properties. J. Neurosci. Res. 12:147-159. van Echten, G. and Sandhoff, K. 1993. Ganglioside metabolism. Enzymology, Topology, and regulation. J. Biol. Chem. 268:5341-5344. Maccioni, H. J. F., Daniotti, J. L., and Martina, J. A. 1999. Organisation of ganglioside synthesis in the Golgi apparatus. Biochim. Biophys. Acta 1437:101-118. Field, M. C. and Wainwright, L. J. 1995. Molecular cloning of eukaryotic glycoprotein and glycolipid glycosyltransferases: A survey. Glycobiology 5:463-472. Panzetta, P., Maccioni, H. J. F., and Caputto, R. 1980. Synthesis of retinal gangliosides during chick embryonic development. J. Neuochem. 35:100-108. Yu, R. K., Macala, L. J., Taki, T., Weinfield, H. M., and Yu, F. S. 1988. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50:1825-1829. Daniotti, J. L., Landa, C. A., Rosner, H., and Maccioni, H. J. F. 1991. GD3 prevalence in adult rat retina correlates with the maintenance of a high GD3-/GM2-synthase activity ratio throughout development. J. Neurochem. 57:2054-2058. Hakomori, S. 1990. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J. Biol. Chem. 265:18713-18716. Hakomori, S., Handa, K., Iwabuchi, K., Yamamura, S., and Prinetti, A. 1998. New insights in glycosphingolipid function: “Glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling [letter]. Glycobiology 8:xi-xix. Saqr, H. E., Pearl, D. K., and Yates, A. J. 1993 A review and predictive models of ganglioside uptake by biological membranes. J. Neurochem. 61:395-411. Tifft, C. J. and Proia, R. L. 2000. Stemming the tide: Glycosphingolipid synthesis inhibitors as therapy for storage diseases. Glycobiology 10:1249-1258. Abe, A., Radin, N. S., Shayman, J. A., Wotring, L. L., Zipkin, R. E., Sivakumar, R., Ruggieri, J. M., Carson, K. G., and Ganem, B. 1995. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J. Lipid Res. 36:611-621. Lee, L., Abe, A., and Shayman, J. A. 1999. Improved inhibitors of glucosylceramide synthase. J. Biol. Chem. 274:14662-146629. Ji, L., Ito, M., Zhang, G., and Yamagata, T. 1995. The hydrolysis of cell surface glycosphingolipids by endoglycoceramidase reduces epidermal growth factor receptor phosphorylation in A431 cells. Glycobiology 5:343-350. Meuillet, E. J., Kroes, R., Yamamoto, H., Warner, T. G., Ferrari, J., Mania-Farnell, B., George, D., Rebbaa, A., Moskal, J. R., and Bremer, E. G. 1999. Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431. Cancer Res. 59:234-240. Rodriguez, J. A., Piddini, E., Hasegawa, T., Miyagi, T., and Dotti, C. G. 2001. Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J. Neurosci. 21:8387-8395. Zurita, A. R., Maccioni, H. J., and Daniotti, J. L. 2001. Modulation of epidermal growth factor receptor phosphorylation by endogenously expressed gangliosides. Biochem. J. 355:465-472. Fukumoto, S., Mutoh, T., Hasegawa, T., Miyazaki, H., Okada, M., Goto, G., Furukawa, K., and Urano, T. 2000. GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J. Biol. Chem. 275:5832-5838. Daniotti, J. L., Martina, J. A., Giraudo, C. G., Zurita, A. R., and Maccioni, H. J. 2000. GM3 alpha2,8-sialyltransferase (GD3 synthase): Protein characterization and subgolgi location in CHOK1 cells. J. Neurochem. 74:1711-1720. Giraudo, C. G., Rosales Fritz, V. M., and Maccioni, H. J. 1999. GA2/GM2/GD2 synthase localizes to the trans-golgi network of CHO-K1 cells. Biochem. J. 342:633-640. Martina, J. A., Daniotti, J. L., and Maccioni, H. J. 2000. GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochem. Res. 25:725-731. Rosales Fritz, V. M., Daniotti, J. L., and Maccioni, H. J. F. Chinese hamster ovary cells lacking GM1 and GD1 a synthesize gangliosides upon transfection with human GM2 synthase. Biochim. Biophys. Acta 1354:153-158. Sato, J. D. and Kan, M. 1999. Cell Culture, basic protocols. Pages 1.2.7, in Bonifacino, J. S., Dasso, M., and Harford, J. B. (eds.), Current protocols in cell biology, John Wiley and Sons, USA. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021. Oakley, B. R., Kirsch, D. R., and Morris, N. R. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 105:361-363. De Maria, R., Lenti, L., Malisan, F., d'Agostino, F., Tomassini, B., Zeuner, A., Rippo, M. R., and Testi, R. 1997. Requirement for GD3 ganglioside in CD95-and ceramide-induced apoptosis. Science 277:1652-1655. Okada, M., Itoh Mi, M., Haraguchi, M., Okajima, T., Inoue, M., Ohishi, H., Matsuda, Y., Iwamoto, T., Kawano, T., Fukumoto, S., Miyazaki, H., Furukawa, K., Aizawa, S., and Furukawa, K. 2001. b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apotosis, but impairs regeneration of the lesioned hypoglossal nerve. J. Biol. Chem. Oct. 26. In press. Liu, H., Nakagawa, T., Kanematsu, T., Uchida, T., and Tsuji, S. 1999. Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the GD3 synthase gene. J. Neurochem. 72:1781-1790. Trindade, V. M. T., Daniotti, J. L., and Maccioni, H. J. F. 1998. Effects of GD3 ganglioside expression on CHO-K1 cell adhesion. XXVII Annual Meeting of Brazilian Society of Biochemistry and Molecular Biology (SBBq). Brazil. Abstract I-40. Daniotti, J. L., Landa, C. A., and Maccioni, H. J. F. 1994. Regulation of ganglioside composition and synthesis is different in developing chick retinal pigment epithelium and neural retina. J. Neurochem. 62:1131-1136. Sottocornola, E., Colombo, I., Vergani, V., Taraboletti, G., and Berra, B. (1998/99). Increased tumorigenicity and invasiveness of C6 rat glioma cells transfected with the human alpha-2,8 sialyltransferase cDNA. Invasion Metastasis 18:142-154. Carubia, J. M., Yu, R. K., Macala, L. J., Kirkwood, J. M., and Varga, J. M. 1984. Gangliosides of normal and neoplastic human melanocytes. Biochem. Biophys. Res. Commun. 12:500-504. Ruan S. and Lloyd K. O. 1992. Glycosylation pathways in the biosynthesis of gangliosides in melanoma and neuroblastoma cells: Relative glycosyltransferase levels determine ganglioside patterns. Cancer Res. 52:5725-5731. Zeng, G., Gao, L., and Yu, R. K. 2000. Reduced cell migration, tumor growth and experimental metastasis of rat F-11 cells whose expression of GD3-synthase is suppressed. Int. J. Cancer 88:53-57. Cheresh, D. A., Pierschbacher, M. D., Herzig, M. A., and Mujoo, K. 1986. Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins. J. Cell Biol. 102:688-696. Nakano, J., Yasui, H., Lloyd, K. O., and Muto, M. 1999. Biologic roles of gangliosides G(M3) and G(D3) in the attachment of human melanoma cells to extracellular matrix proteins. J. Investig. Dermatol. Symp. Proc. 4:173-176. Martina, J. A., Daniotti, J. L., and Maccioni, H. J. 1998. Influence of N-glycosylation and N-glycan trimming on the activity and intracellular traffic of GD3 synthase. J. Biol. Chem. 273:3725-3731.