GC–MS and GC–IR analysis of methylenedioxyphenylalkylamine analogues of the psychoactive 25X-NBOMe drugs
Tài liệu tham khảo
Arbo, 2014, Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment, Toxicol. Lett., 229, 178, 10.1016/j.toxlet.2014.06.031
Baumann, 2013, Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products, Neuropsychopharmacology, 38, 552, 10.1038/npp.2012.204
Cottler, 2001, Ecstasy abuse and dependence among adolescents and young adults: applicability and reliability of DSM-IV criteria, Hum. Psychopharmacol., 16, 599, 10.1002/hup.343
Abiedalla, 2017, GC-MS, MS/MS and GC-IR analysis of a series of methylenedioxyphenyl-aminoketones: precursors, ring regioisomers and side-chain homologs of 3,4-methylenedioxypyrovalerone, J. Chromatogr. Sci., 55, 99, 10.1093/chromsci/bmw159
Abiedalla, 2017, GC-MS, GC-MS/MS and GC-IR differentiation of desoxy cathinone derivatives: Cyclic tertiary amines related to MDPV, J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 1048, 38, 10.1016/j.jchromb.2017.01.045
A. Shulgin, A. Shulgin, Pihkal: A Chemical Love Story, 1991.
Heim, 2004
Braden, 2006, Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists, Mol. Pharmacol., 70, 1956, 10.1124/mol.106.028720
Kyriakou, 2015, NBOMe: new potent hallucinogens–pharmacology, analytical methods, toxicities, fatalities: a review, Eur. Rev. Med. Pharmacol. Sci., 19, 3270
Hill, 2013, Severe clinical toxicity associated with analytically confirmed recreational use of 25I-NBOMe: case series, Clin. Toxicol. (Philadelphia, Pa.), 51, 487, 10.3109/15563650.2013.802795
Papoutsis, 2015, 25B-NBOMe and its precursor 2C-B: modern trends and hidden dangers, Forensic Toxicol., 33, 1, 10.1007/s11419-014-0242-9
Almalki, 2020, GC–MS analysis of methylenedioxybenzyl analogues of the serotonin receptor agonists 25X-NBOMe drugs, Forensic Chem., 21, 100284, 10.1016/j.forc.2020.100284
Almalki, 2020, Vapor phase infrared identification of regioisomeric N-(dimethoxybenzyl)-4-iodo- and 4-bromo-2,5-dimethoxyphenethylamines, Forensic Chem., 19, 100239, 10.1016/j.forc.2020.100239
Almalki, 2020, Structure fragmentation studies of ring-substituted N-trifluoroacetyl-N-benzylphenethylamines related to the NBOMe drugs, Rapid Commun. Mass sSpectrometry: RCM, 34
Almalki, 2019, GC–MS analysis of regioisomeric substituted N-benzyl-4-bromo-2,5-dimethoxyphenethylamines, Forensic Chem., 14, 100164, 10.1016/j.forc.2019.100164
Davidson, 2019, The differentiation of 2,5-dimethoxy-N-(N-methoxybenzyl)phenethylamine (NBOMe) isomers using GC retention indices and multivariate analysis of ion abundances in electron ionization mass spectra, Forensic Chem., 14, 100160, 10.1016/j.forc.2019.100160
Abdel-Hay, 2013, Gas chromatography/mass spectrometry analysis of the six-ring regioisomeric dimethoxybenzyl-N-methylpiperazines (DMBMPs), Rapid communications in Mass Spectrometry : RCM, 27, 2551, 10.1002/rcm.6716
McLafferty, 1968, Substituent effects in unimolecular ion decompositions. VIII. Rearrangement ions in the mass spectra of substituted phenyl methyl ethers, J. Org. Chem., 33, 124, 10.1021/jo01265a022
Awad, 2007, Gas chromatography-mass spectrometry analysis of regioisomeric ring substituted methoxy methyl phenylacetones, J. Chromatogr. Sci., 45, 458, 10.1093/chromsci/45.8.458
Almalki, 2020, GC–MS analysis of N-(bromodimethoxybenzyl)-2-, 3-, and 4-methoxyphenethylamines: Inverse analogues of the psychoactive 25B-NBOMe drug, Forensic Chem., 21, 100277, 10.1016/j.forc.2020.100277
Awad, 2012, Studies on the formation of N-methylperfluoroalkylnitrile cations from perfluoroacylphenethylamines in electron ionisation mass spectrometry: unique marker ion fragments in methamphetamine analysis, Eur. J. Mass Spectrometry (Chichester, England), 18, 287, 10.1255/ejms.1185
Almalki, 2019, Vapor phase GC-IR identification of regioisomeric N-methoxybenzyl-4-substituted-2,5-dimethoxyphenethylamines (NBOMe), Forensic Chem., 16, 10.1016/j.forc.2019.100181