GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects

Thin-Walled Structures - Tập 150 - Trang 106706 - 2020
David Henriques1, Rodrigo Gonçalves1, Carlos Sousa2, Dinar Camotim3
1CERIS and Departamento de Engenharia Civil, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
2CONSTRUCT, Departamento de Engenharia Civil, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465, Porto, Portugal
3CERIS, DECivil, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal

Tài liệu tham khảo

Schardt, 1966, Eine erweiterung der technischen biegetheorie zur berechnung prismatischer faltwerke, Stahlbau, 35, 161 Schardt, 1989 Camotim, 2010, Latest developments in the GBT analysis of thin-walled steel structures, 33 Camotim, 2013, Buckling analysis of thin-walled steel structures using generalized beam theory (GBT): state-of-the-art report, Steel Construction, 6, 117, 10.1002/stco.201310021 Nedelcu, 2010, GBT formulation to analyse the behaviour of thin-walled members with variable cross-section, Thin-Walled Struct., 48, 629, 10.1016/j.tws.2010.03.001 Gonçalves, 2013, On the behaviour of thin-walled steel regular polygonal tubular members, Thin-Walled Struct., 62, 191, 10.1016/j.tws.2012.08.006 de Miranda, 2015, A high performance flexibility-based GBT finite element, Comput. Struct., 158, 285, 10.1016/j.compstruc.2015.06.010 Cai, 2016, Elastic buckling analysis of thin-walled structural members with rectangular holes using generalized beam theory, Thin-Walled Struct., 107, 274, 10.1016/j.tws.2016.06.014 Duan, 2019, GBT deformation modes for thin-walled cross-sections with circular rounded corners, Thin-Walled Struct., 136, 64, 10.1016/j.tws.2018.12.026 Gonçalves, 2009, Steel-concrete composite beam analysis using Generalised Beam Theory, 657 Gonçalves, 2010, Steel-concrete composite bridge analysis using Generalised Beam Theory, Steel Compos. Struct., 10, 223, 10.12989/scs.2010.10.3.223 Taig, 2015, Generalised beam theory (GBT) for composite beams with partial shear interaction, Eng. Struct., 99, 582, 10.1016/j.engstruct.2015.05.025 Henriques, 2015, A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects, Thin-Walled Struct., 90, 202, 10.1016/j.tws.2015.01.010 Henriques, 2016, GBT-based finite element to assess the buckling behaviour of steel–concrete composite beams, Thin-Walled Struct., 107, 207, 10.1016/j.tws.2016.06.005 Henriques, 2019, A visco-elastic GBT-based finite element for steel-concrete composite beams, Thin-Walled Struct., 145, 106440, 10.1016/j.tws.2019.106440 Bazant, 1973, Dirichlet series creep function for aging concrete, J. Eng. Mech. Div., 99, 367, 10.1061/JMCEA3.0001741 Dezi, 2001, Time-dependent analysis of shear-lag effect in composite beams, J. Eng. Mech., 127, 71, 10.1061/(ASCE)0733-9399(2001)127:1(71) Gara, 2009, A beam finite element including shear lag effect for the time-dependent analysis of steel–concrete composite decks, Eng. Struct., 31, 1888, 10.1016/j.engstruct.2009.03.017 Gara, 2010, Short- and long-term analytical solutions for composite beams with partial interaction and shear-lag effects, International Journal of Steel Structures, 10, 359, 10.1007/BF03215844 Zhu, 2017, Analytical solutions for composite beams with slip, shear-lag and time-dependent effects, Eng. Struct., 152, 559, 10.1016/j.engstruct.2017.08.071 Lezgy-Nazargah, 2019, A sinus shear deformation model for static analysis of composite steel-concrete beams and twin-girder decks including shear lag and interfacial slip effects, Thin-Walled Struct., 134, 61, 10.1016/j.tws.2018.10.001 Ranzi, 2013, State of the art on the time-dependent behaviour of composite steel–concrete structures, J. Constr. Steel Res., 80, 252, 10.1016/j.jcsr.2012.08.005 Diana Fea, 2019, 3 Gonçalves, 2010, A new approach to the calculation of cross-section deformation modes in the framework of Generalized Beam Theory, Comput. Mech., 46, 759, 10.1007/s00466-010-0512-2 Gonçalves, 2012, Geometrically non-linear generalised beam theory for elastoplastic thin-walled metal members, Thin-Walled Struct., 51, 121, 10.1016/j.tws.2011.10.006 Litton, 1974 Bazant, 1980, Rough cracks in reinforced concrete, J. Struct. Div., 106, 819, 10.1061/JSDEAG.0005400 de Borst, 1985, Non-orthogonal cracks in a smeared finite element model, Eng. Comput., 2, 35, 10.1108/eb023599 Rots, 1985, Smeared crack approach and fracture localization in concrete, Heron, 30, 629 Riggs, 1986, Rough crack model for analysis of concrete, J. Eng. Mech., 112, 448, 10.1061/(ASCE)0733-9399(1986)112:5(448) de Borst, 1987, Smeared cracking, plasticity, creep, and thermal loading – a unified approach, Comput. Methods Appl. Mech. Eng., 62, 89, 10.1016/0045-7825(87)90091-0 Sena-Cruz, 2004, Tech. Rep. Gonçalves, 2014, On the shear deformation modes in the framework of generalized beam theory, Thin-Walled Struct., 84, 325, 10.1016/j.tws.2014.07.012 Bebiano, 2015, A cross-section analysis procedure to rationalise and automate the performance of GBT-based structural analyses, Thin-Walled Struct., 92, 29, 10.1016/j.tws.2015.02.017 Bebiano, 2018, GBTul 2.0 - a second-generation code for the GBT-based buckling and vibration analysis of thin-walled members, Thin-Walled Struct., 124, 235, 10.1016/j.tws.2017.12.002 Gonçalves, 2011, Generalised beam theory-based finite elements for elastoplastic thin-walled metal members, Thin-Walled Struct., 49, 1237, 10.1016/j.tws.2011.05.011 2010 Gonçalves, 2017, Improving the efficiency of GBT displacement-based finite elements, Thin-Walled Struct., 111, 165, 10.1016/j.tws.2016.10.020 2004