GARSAaaS: group activity recognition and situation analysis as a service
Tóm tắt
Human activity recognition using embedded mobile and embedded sensors is becoming increasingly important. Scaling up from individuals to groups, that is, group activity recognition, has attracted significant attention recently. This paper proposes a model and specification language for group activities called GroupSense-L, and a novel architecture called GARSAaaS (GARSA-as-a-Service) to provide services for mobile Group Activity Recognition and Situation Analysis (or GARSA) applications. We implemented and evaluated GARSAaaS which is an extension of a framework called GroupSense (Abkenar et al., 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), 2016) where sensor data, collected using smartphone sensors, smartwatch sensors and embedded sensors in things, are aggregated via a protocol for these different devices to share information, as required for GARSA. We illustrate our approach via a scenario for providing services for bush walking leaders and bush walkers in a bushwalking group activity. We demonstrate the feasibility of our model and expressiveness of our proposed model.
Từ khóa
Tài liệu tham khảo
Abkenar A, Loke SW. Myactivity: Cloud-hosted continuous activity recognition using ontology-based stream reasoning. In: 2014 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering: 2014. p. 117–126.
Abkenar AB, Loke SW, Rahayu W, Zaslavsky A. Energy considerations for continuous group activity recognition using mobile devices: The case of groupsense. In: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA). Crans-Montana: IEEE: 2016. p. 479–486.
Abkenar AB, Loke SW, Zaslavsky. Iot-enabled group activity recognition services using a modelling language approach. In: Proceeding of the 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU 2018). Bhimtal: IEEE: 2018.
Abkenar AB, Loke SW, Zaslavsky A, Zheng JX. A service-oriented framework for group activity safety. In: Proceeding of the 14th EAI International Conference on Mobile and Ubiquitous Systems Workshop (IoCAT Workshop). Melbourne: IEEE: 2017.
Alevizos E, Skarlatidis A, Artikis A, Paliouras G. Probabilistic complex event recognition: A survey. ACM Comput Surv. 2017; 50(5):71:1–:31.
Bakhshandehabkenar A, Loke SW, Rahayu W, Zaslavasky A. A framework for continuous group activity recognition using mobile devices: Concept and experimentation. In: 2014 IEEE 15th International Conference on Mobile Data Management, vol. 2. Brisbane: IEEE: 2014. p. 23–26.
Bourbia AL, Son H, Shin B, Kim T, Lee D, Hyun SJ. Temporal dependency rule learning based group activity recognition in smart spaces. In: 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), vol. 1: 2016. p. 658–663.
Chen L, Nugent C. Ontology-based activity recognition in intelligent pervasive environments. Int J Web Inf Syst. 2009; 5(4):410–30.
Davari M, Amintoosi H. A survey on participant recruitment in crowdsensing systems. In: 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE). Mashhad: IEEE: 2016. p. 286–291.
Deng Z, Vahdat A, Hu H, Mori G. Structure inference machines: Recurrent neural networks for analyzing relations in group activity recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco: 2016. p. 4772–4781.
Do TMT, Gatica-Perez D. Groupus: Smartphone proximity data and human interaction type mining. In: Wearable Computers (ISWC), 2011 15th Annual International Symposium on. San Francisco: IEEE: 2011. p. 21–28.
Ganti RK, Ye F, Lei H. Mobile crowdsensing: current state and future challenges. IEEE Commun Mag. 2011; 49(11):32–9.
Gordon D, Hanne J-H, Berchtold M, Shirehjini AAN, Beigl M. Towards collaborative group activity recognition using mobile devices. Mob Netw Appl. 2013; 18(3):326–40.
Gordon D, Scholz M, Beigl M. Group activity recognition using belief propagation for wearable devices. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, ISWC ’14. New York: ACM: 2014. p. 3–10.
Gordon D, Wirz M, Roggen D, Tröster G, Beigl M. Group affiliation detection using model divergence for wearable devices. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, ISWC ’14. New York: ACM: 2014. p. 19–26.
Gravina R, Ma C, Pace P, Aloi G, Russo W, Li W, Fortino G. Cloud-based activity-aaservice cyber–physical framework for human activity monitoring in mobility. Futur Gener Comput Syst. 2017; 75:158–71.
Guo B, He H, Yu Z, Zhang D, Zhou X. Groupme: Supporting group formation with mobile sensing and social graph mining. In: International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services. Beijing: Springer: 2012. p. 200–211. December 12-14.
Guo B, Yu Z, Chen L, Zhou X, Ma X. Mobigroup: Enabling lifecycle support to social activity organization and suggestion with mobile crowd sensing. IEEE Trans Hum-Mach Syst. 2016; 46(3):390–402.
Heart.org. Target Heart Rates. 2016. Accessed 05 June 2017.
Hsu JY-J, Lian C-C, Jih W-R. Probabilistic models for concurrent chatting activity recognition. ACM Trans Intell Syst Technol (TIST). 2011; 2(1):4.
Hung H, Englebienne G, Kools J. Classifying social actions with a single accelerometer. In: Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing. Zurich: ACM: 2013. p. 207–210. September 08-12, 2013.
Jaimes LG, Vergara-Laurens IJ, Raij A. A survey of incentive techniques for mobile crowd sensing. IEEE Internet Things J. 2015; 2(5):370–80.
Jayarajah K, Lee Y, Misra A, Balan RK. Need accurate user behaviour?: Pay attention to groups! In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15. New York: ACM: 2015. p. 855–866.
Kafalı Ö, Romero AE, Stathis K. Agent-oriented activity recognition in the event calculus: An application for diabetic patients. Comput Intell. 2017; 33(4):899–925.
Kahol K. Integrative gaming: a framework for sustainable game-based diabetes management. J Diabetes Sci Technol. 2011; 5(2):293–300.
Lounis A, Hadjidj A, Bouabdallah A, Challal Y. Secure and scalable cloud-based architecture for e-health wireless sensor networks. In: Computer communications and networks (ICCCN), 2012 21st international conference on. IEEE: 2012. p. 1–7.
Lu C-H, Chiang Y-T. Interaction-feature enhanced multiuser model learning for a home environment using ambient sensors. Int J Intell Syst. 2014; 29(11):1015–46.
Mukhopadhyay SC. Wearable sensors for human activity monitoring: A review. IEEE Sensors J. 2015; 15(3):1321–30.
Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R. An autonomic cloud environment for hosting ecg data analysis services. Futur Gener Comput Syst. 2012; 28(1):147–54.
Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware computing for the internet of things: A survey. IEEE Commun Surv Tutorials. 2014; 16(1):414–54.
Quinlan JR. C4. 5: programs for machine learning.Elsevier Science; 2014. https://books.google.com/books?id=b3ujBQAAQBAJ.
Singla G, Cook DJ, Schmitter-Edgecombe M. Recognizing independent and joint activities among multiple residents in smart environments. J Ambient Intell Humanized Comput. 2010; 1(1):57–63.
Szczerbak MK, Toutain F, Bouabdallah A, Bonnin J-M. Kramer: New social medium based on collaborative recognition of important situations. Comput J. 2013; 57(9):1296–317.
Yiengprugsawan V, Banwell C, Takeda W, Dixon J, Seubsman S-a, Sleigh AC. Health, happiness and eating together: what can a large thai cohort study tell us?Global J Health Sci. 2015; 7(4):270.
Yu N, Zhao Y, Han Q, Zhu W, Wu H. Identification of partitions in a homogeneous activity group using mobile devices. Mob Inf Syst. 2016; 2016:1–14.
Zhang Y, Chen M, Mao S, Hu L, Leung V. Cap: Community activity prediction based on big data analysis. IEEE Netw. 2014; 28(4):52–7.