GABAA Receptors of Cerebellar Granule Cells in Culture: Interaction with Benzodiazepines

Neurochemical Research - Tập 38 Số 12 - Trang 2453-2462 - 2013
A. Cupello1, Mario Di Braccio2, Elena Gatta1, Giancarlo Grossi2, Periklis Nikas1, Francesca Pellistri1, Mauro Robello1
1Dipartimento di Fisica, Università di Genova, Genoa, Italy
2Sezione Chimica Farmaceutica, Dipartimento di Farmacia, Università di Genova, Genoa, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sternbach LH, Reeder E (1961) Quinazolines and 1,4-benzodiazepines. IV. Transformations of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine 4-oxide. J Org Chem 26:4936–4941

Sternbach LH, Fryer R Ian, Metlesics W, Reeder E, Sach G, Saucy G, Stempel A (1962) Quinazolines and 1,4-benzodiazepines. VI. Halo-, methyl-, and methoxy-substituted 1,3–dihydro-5-phenyl-2H-1,4-benzodiazepin-2-ones. J Org Chem 27:3788–3796

Zbinden G, Randall LO (1967) Pharmacology of benzodiazepines: laboratory and clinical correlations. Adv Pharmacol 5:213–291

Doble A, Martin IL (1992) Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol Sci 13:76–81

Haefely W, Kulcsar A, Mohler H, Pieri L, Polc P, Schaffner R (1975) Possible involvement of GABA in the central actions of benzodiazepines. Adv Biochem Psychopharmacol 14:131–151

Mao CC, Guidotti A, Costa E (1975) Evidence for an involvement of GABA in the mediation of the cerebellar cGMP decrease and the anticonvulsant action diazepam. Naunyn Schmiedebergs Arch Pharmacol 289:369–378

Olsen RW (1981) GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem 37:1–13

Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17:517–525

Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401:796–800

Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Mohler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

Dias R, Sheppard WF, Fradley RL, Garrett EM, Stanley JL, Tye SJ, Goodacre S, Lincoln RJ, Cook SM, Conley R, Hallett D, Humphries AC, Thompson SA, Wafford KA, Street LJ, Castro JL, Whiting PJ, Rosahl TW, Atack JR, McKerman RM, Dawson GR, Reynolds DS (2005) Evidence for a significant role of alpha 3-containing GABAA receptors in mediating the anxiolytic effects of benzodiazepines. J Neurosci 25:10682–10688

Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102:915–920

Morris HV, Dawson GR, Reynolds DS, Atack JR, Stephens DN (2006) Both alpha2 and alpha3 GABAA receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur J Neurosci 23:2495–2504

D’Ulst C, Atack JR, Kooy RF (2009) The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today 14:866–875

Luddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34:245–254

Olsen RW, Sieghart W (2009) GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148

Gastaut H, Low MD (1979) Antiepileptic properties of clobazam, a 1-5 benzodiazepine, in man. Epilepsia 20:437–446

Koeppen D, Baruzzi A, Capozza M, Chauvel P, Courjon J, Favel P, Harmant J, Lorenz H, Oller FV, Procaccianti G et al (1987) Clobazam in therapy-resistant patients with partial epilepsy: a double-blind placebo-controlled crossover study. Epilepsia. 28:495–506

Remy C (1994) Clobazam in the treatment of epilepsy: a review of the literature. Epilepsia 35(Suppl 5):S88–S91

Sankar R (2012) GABAA receptor physiology and its relationship to the mechanism of action of the 1,5-benzodiazepine clobazam. CNS Drugs 26:229–244

Nakamura F, Suzuki S, Nishimura S, Yagi K, Seino M (1996) Effects of clobazam and its active metabolite on GABA-activated currents in rat cerebral neurons in culture. Epilepsia 37:728–735

Gatta E, Cupello A, Di Braccio M, Grossi G, Ferruzzi R, Roma G, Robello M (2010) New 1,5-benzodiazepine compounds: activity at native GABAA receptors. Neuroscience 166:917–923

Fisher JL (2011) Interactions between modulators of the GABAA receptor: stiripentol and benzodiazepines. Eur J Pharmacol 654:160–165

Palacios JM, Kuhar MJ (1981) Ontogeny of high-affinity GABA and benzodiazepine receptors in the rat cerebellum: an autoradiographic study. Brain Res 254:531–539

Young WS 3rd, Niehoff D, Kuhar MJ, Beer B, Lippa AS (1981) Multiple benzodiazepine receptor localization by light microscopic radiohistochemistry. J Pharmacol Exp Ther 216:425–430

Unnerstall JR, Kuhar MJ, Niehoff DL, Palacios JM (1981) Benzodiazepine receptors are coupled to a subpopulation of gamma-aminobutyric acid (GABA) receptors: evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 218:797–804

Braestrup C, Nielsen M, Biggio G, Squires RF (1979) Neuronal localisation of benzodiazepine receptors in cerebellum. Neurosci Lett 13:219–224

Luddens H, Pritchett DB, Kohler M, Killisch I, Keinamen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651

Saxena NC, Macdonald RL (1994) Assembly of GABAA receptor subunits: role of the delta subunit. J Neurosci 14:7077–7086

Saxena NC, Macdonald RL (1996) Properties of putative cerebellar gamma-aminobutyric acid A receptor isoforms. Mol Pharmacol 49:567–579

Braestrup C, Nielsen M (1980) Multiple benzodiazepine receptors. TINS 3:301–303

Braestrup C, Nielsen M (1981) [3H]Propyl beta-carboline-3-carboxylate as a selective radioligand for the BZ1 benzodiazepine receptor subclass. J Neurochem 37:333–341

Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H) diazepam binding. Proc Natl Acad Sci USA 74:3805–3809

Mohler H, Okada T (1977) Benzodiazepine receptor: demonstration in the central nervous system. Science 198:849–851

Tallman JF, Thomas JW, Gallager DW (1978) GABAergic modulation of benzodiazepine binding site sensitivity. Nature 274:383–385

Martin IL, Candy JM (1978) Facilitation of benzodiazepine binding by sodium chloride and GABA. Neuropharmacology 17:993–998

Mohler H, Richards JG (1981) Agonist and antagonist benzodiazepine receptor interaction in vitro. Nature 294:763–765

Ehlert FJ, Roeske WR, Yamamura SH, Yamamura HI (1983) The benzodiazepine receptor: complex binding properties and the influence of GABA. Adv Biochem Psychopharmacol 36:209–220

Sieghart W, Karobath M (1980) Molecular heterogeneity of benzodiazepine receptors. Nature 286:285–287

Sieghart W, Drexler G (1983) Irreversible binding of [3H]flunitrazepam to different proteins in various brain regions. J Neurochem 41:47–55

Eichinger A, Sieghart W (1986) Postnatal development of proteins associated with different benzodiazepine receptors. J Neurochem 46:173–180

Lippa AS, Meyerson LR, Beer B (1982) Molecular substrates of anxiety: clues from the heterogeneity of benzodiazepine receptors. Life Sci 31:1409–1417

Sieghart W, Drexler G, Mayer A, Schuster A (1983) Interaction of benzodiazepine agonists and antagonists with different benzodiazepine receptors. Adv Biochem Psychopharmacol 38:11–19

Sieghart W, Eichinger A, Richards JG, Mohler H (1987) Photoaffinity labeling of benzodiazepine receptor proteins with the partial inverse agonist [3H]Ro 15-4513: a biochemical and autoradiographic study. J Neurochem 48:46–52

Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA et al (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328:221–227

Barnard EA, Darlison MG, Seeburg P (1987) Molecular biology of the GABAA receptor: the receptor channel superfamily. TINS 10:502–509

Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

Mohler H, Benke D, Fritschy JM, Benson J (2000) The benzodiazepine site of GABAA receptors. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott Williams and Wilkins, Philadelphia, pp 97–112

Mohler H (2001) Function of GABA-receptors: pharmacology and pathophysiology. In: Mohler H (ed) Pharmacology of GABA and glycine neurotransmission. Springer, Berlin, pp 101–106

Whiting PJ, Wafford KA, McKernan RM (2000) Pharmacologic subtypes of GABAA receptors based upon subunit composition. In: Martin DL, Olsen RW (eds) GABA in the nervous system: a view at fifty years. Lippincott Williams and Wilkins, Philadelphia, pp 113–126

Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497:753–759

Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18:1693–1703

Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci USA 100:14439–14444

Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci 6:215–229

Pritchett DB, Luddens H, Seeburg PH (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392

Pritchett DB, Seeburg PH (1990) Gamma-aminobutyric acid A receptor alpha 5-subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 54:1802–1804

Mohler H, Benke D, Mertens S, Fritschy JM (1992) GABAA-receptor subtypes differing in alpha-subunit composition display unique pharmacological properties. Adv Biochem Psychopharmacol 47:41–53

Poltl A, Hauer B, Fucks K, Tretter V, Sieghart W (2003) Subunit composition and quantitative importance of GABAA receptor subtypes in the cerebellum of mouse and rat. J Neurochem 87:1444–1455

Chang Y, Wang R, Barot S, Weiss DS (1996) Stoichiometry of a recombinant GABAA receptor. J Neurosci 16:5415–5424

Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17:2728–2737

Farrar SJ, Whiting PJ, Bonnert TP, McKernan RM (1999) Stoichiometry of a ligand-gated ion channel determined by fluorescence energy transfer. J Biol Chem 274:10100–10104

Baumann SW, Baur R, Sigel E (2001) Subunit arrangement of gamma-aminobutyric acid type A receptors. J Biol Chem 276:36275–36280

Baumann SW, Baur R, Sigel E (2002) Forced subunit assembly in alpha1beta2gamma2 GABAA receptors. Insight into the absolute arrangement. J Biol Chem 277:46020–46025

Baur R, Minier F, Sigel E (2006) A GABAA receptor of defined subunit composition and positioning: concatenation of five subunits. FEBS Lett 580:1616–1620

Luscher BP, Baur R, Goeldner M, Sigel E (2012) Influence of GABAA receptor α subunit isoforms on the benzodiazepine binding site. PLoS One 7:42101

Minier F, Sigel E (2004) Positioning of the alpha-subunit isoforms confers a functional signature to gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 101:7769–7774

Benson JA, Low K, Keist R, Mohler H, Rudolph U (1998) Pharmacology of recombinant gamma-aminobutyric acid A receptors rendered diazepam-insensitive by point-mutated alpha-subunits. FEBS Lett 431:400–404

Dunn SM, Davies M, Muntoni AL, Lambert JJ (1999) Mutagenesis of the rat alpha1 subunit of the gamma-aminobutyric acid (A) receptor reveals the importance of residue 101 in determining the allosteric effects of benzodiazepine site ligands. Mol Pharmacol 56:768–774

Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429

Obata K, Ito M, Ochi R, Sato N (1967) Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of gamma-aminobutyric acid on Deiters neurons. Exp Brain Res 4:43–57

Obata K, Takeda K, Shinozaki H (1970) Further study on pharmacological properties of the cerebellar-induced inhibition of Deiters neurones. Exp Brain Res 11:327–342

Woodward DJ, Hoffer BJ, Siggins GR, Oliver AP (1971) Inhibition of Purkinje cells in the frog cerebellum. II. Evidence for GABA as the inhibitory transmitter. Brain Res 33:91–100

Chan-Palay V, Palay SL (1978) Ultrastructural localization of gamma-aminobutyric acid receptors in the mammalian central nervous system by means of [3H]muscimol binding. Proc Natl Acad Sci USA 75:2977–2980

Jiang Z (1981) A comparison of the effects of flurazepam on gamma-aminobutyric acid mediated depression of cerebellar and cerebral cortical neurons. Can J Physiol Pharmacol 59:595–598

Gardner CR (1984) Agonist and inverse agonist effects of CL 218872 on benzodiazepine receptors. Neurosci Lett 51:1–6

Tarnawa I, Farkas S, Berzsenyi P, Pataki A, Andràsi F (1989) Electrophysiological studies with a 2,3-benzodiazepine muscle relaxant: GYKI 52466. Eur J Pharmacol 167:193–199

Hussain S, Bagust J, Ward RA, Gardner CR, Walker RJ (1991) Modulation of GABA-mediated inhibition in rat cerebellar slices by benzodiazepine receptor ligands. Gen Pharmacol 22:907–915

Fritschy JM, Panzanelli P (2006) Molecular and synaptic organization of GABAA receptors in the cerebellum: effects of targeted subunit gene deletions. Cerebellum 5:275–285

Pringle AK, Gardner CR, Walker RJ (1994) Different functional effect of Ro 15-4513 and Ro 19-4603 on synaptic responses of Purkinje cells in the rat cerebellar slice. Brain Res 665:222–228

Tia S, Wang JF, Kotchabhakdi N, Vicini S (1996) Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABAA receptor alpha 6 subunit. J Neurosci 16:3630–3640

Rossi DJ, Hamann M (1998) Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABAA receptors and glomerular geometry. Neuron 20:783–795

Hamann M, Rossi DJ, Attwell D (2002) Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 33:625–633

Duguid I, Branco T, London M, Chadderton P, Hausser M (2012) Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J Neurosci 32:11132–11143

Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci USA 100:15218–15223

Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M (2005) Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nat Neurosci 8:339–345

Hanchar HJ, Chutsrinopkun P, Meera P, Supavilai P, Sieghart W, Wallner M, Olsen RW (2006) Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to alpha4/6beta3delta GABAA receptors. Proc Natl Acad Sci USA 103:8546–8551

Olsen RW, Hanchar HJ, Meera P, Wallner M (2007) GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41:201–209

Brickley SG, Cull-Candy SG, Farrant M (1999) Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J Neurosci 19:2960–2973

Levi G, Aloisi F, Ciotti MT, Gallo V (1984) Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res 290:77–86

Meier E, Drejer J, Schousboe A (1984) GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells. J Neurochem 43:1737–1744

Belhage B, Meier E, Schousboe A (1986) GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors. Neurochem Res 11:599–606

Belhage B, Hansen GH, Schousboe A, Meier E (1988) GABA agonist promoted formation of low affinity GABA receptors on cerebellar granule cells is restricted to early development. Int J Dev Neurosci 6:125–128

Luccardini C, Barilà B, Cupello A, Robello M, Mainardi P (2001) Regulation of the expression of low affinity GABAA receptors in rat cerebellar granule cells. Amino Acids 21:119–128

Kim HY, Sapp DW, Olsen RW, Tobin AJ (1993) GABA alters GABAA receptor mRNA and increases ligand binding. J Neurochem 61:2334–2337

Robello M, Amico C, Cupello A (1999) Evidence of two populations of GABAA receptors in cerebellar granule cells in culture: different desensitization kinetics, pharmacology, serine/threonine kinase sensitivity, and localization. Biochem Biophys Res Commun 266:603–608

Beattie CE, Siegel RE (1993) Developmental cues modulate GABAA receptor subunit mRNA expression in cultured cerebellar granule neurons. J Neurosci 13:1784–1792

Behringer KA, Gault LM, Siegel RE (1996) Differential regulation of GABAA receptor subunit mRNAs in rat cerebellar granule neurons: importance of environmental cues. J Neurochem 66:1347–1353

Gao B, Fritschy JM (1995) Cerebellar granule cells in vitro recapitulate the in vivo pattern of GABAA-receptor subunit expression. Brain Res Dev Brain Res 88:1–16

Carlson BX, Belhage B, Hansen GH, Elster L, Olsen RW, Schousboe A (1997) Expression of the GABAA receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors. J Neurosci Res 50:1053–1062

Gault LM, Siegel RE (1997) Expression of the GABAA receptor delta subunit is selectively modulated by depolarization in cultured rat cerebellar granule neurons. J Neurosci 17:2391–2399

Gault LM, Siegel RE (1998) NMDA receptor stimulation selectively initiates GABAA receptor delta subunit mRNA expression in cultured rat cerebellar granule neurons. J Neurochem 70:1907–1915

Salonen V, Kallinen S, Lopez-Picon FR, Korpi ER, Holopainen IE, Uusi-Oukari M (2006) AMPA/kainate receptor-mediated up-regulation of GABAA receptor delta subunit mRNA expression in cultured rat cerebellar granule cells is dependent on NMDA receptor activation. Brain Res 1087:33–40

Carlson BX, Elster L, Schousboe A (1998) Pharmacological and functional implications of developmentally-regulated changes in GABAA receptor subunit expression in the cerebellum. Eur J Pharmacol 352:1–14

Davids E, Hevers W, Damgen K, Zhang K, Tarazi FI, Luddens H (2002) Organotypic rat cerebellar slice culture as a model to analyze the molecular pharmacology of GABAA receptors. Eur Neuropsychopharmacol 12:201–208

Uusi-Oukari M, Kontturi LS, Kallinen SA, Salonen V (2010) AMPA receptors serum-dependently mediate GABAA receptor alpha1 and alpha6 subunit down-regulation in cultured mouse cerebellar granule cells. Neurochem Int 56:720–726

Robello M, Amico C, Cupello A (1993) Regulation of GABAA receptor in cerebellar granule cells in culture: differential involvement of kinase activities. Neuroscience 53:131–138

Baldelli P, Cupello A, Robello M (1994) GABAA receptors on rat cerebellar granule cells are potently activated by muscimol but only slightly modulated by the benzodiazepine agonist flunitrazepam. Amino Acids 6:155–163

Cupello A, Robello M (2000) GABAA receptor modulation in rat cerebellum granule cells. Receptors Channels 7:151–171

Robello M, Amico C, Bucossi G, Cupello A, Rapallino MV, Thellung S (1996) Nitric oxide and GABAA receptor function in the rat cerebral cortex and cerebellar granule cells. Neuroscience 74:99–105

Korpi ER, Kuner T, Seeburg PH, Luddens H (1995) Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor. Mol Pharmacol 47:283–289

Hosie AM, Dunne EL, Harvey RJ, Smart TG (2003) Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity. Nat Neurosci 6:362–369

Gatta E, Cupello A, Pellistri F, Robello M (2009) GABAA receptors of cerebellar granule cells in culture: explanation of overall insensitivity to ethanol. Neuroscience 162:1187–1191

Nikas P, Gatta E, Cupello A, Di Braccio M, Grossi G, Pellistri F, Robello M (2013) Modulation of native GABAA receptor activity by triazolo 1,5-benzodiazepines. Neuroscience 243:158–164

Nikas P, Gatta E, Cupello A, Di Braccio M, Pellistri F, Robello M (2013) Clobazam and Diazepam: their effects on GABAA receptors of cerebellar granule cells in culture. Abstracts of the FENS Featured Regional Meeting, Prague

Rossi S, Pirola O, Maggi R (1969) Sintesi di 1,2,4,5-tetraidro-2,4-dicheto-3H-1,5-benzodiazepine. Chim Ind 51:479–483

Grossi GC, Di Braccio M, Roma G, Ghia M, Brambilla G (1993) 1,5-benzodiazepines XI. 5-(dialkylamino) or 5-(alkylthio) substituted 8-chloro-6-phenyl-6H-(1,2,4)triazolo(4,3-a)(1,5) benzodiazepines with anticonvulsant activity. Eur J Med Chem 28:577–584

Hester J, Rudzik AD, Kamdar BV (1971) 6-Phenyl-4H-s-triazolo[4,3-a][1, 4]benzodiazepines which have central nervous system depressant activity. Med Chem 14:1078–1081