GA-based multi-objective optimization of active nonlinear quarter car suspension system—PID and fuzzy logic control
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdelrassoul, R., Ali, Y., & Zaghloul, M. S. (2016). Genetic algorithm-optimized PID controller for better performance of PV system. In Proceedings - 2016 world symposium on computer applications and research, WSCAR 2016 (pp. 18–22). https://doi.org/10.1109/WSCAR.2016.14 .
Alander, J. T. (1992). On optimal population size of genetic algorithms. In CompEuro 1992 Proceedings computer systems and software engineering (pp. 65–70). https://doi.org/10.1109/CMPEUR.1992.218485 .
Amato, F. J. D., & Viassolo, D. E. (2000). Fuzzy control for active suspensions. Mechatronics, 10(8), 897–920. https://doi.org/10.1016/S0957-4158(99)00079-3 .
Baumal, A. E., McPhee, J. J., & Calamai, P. H. (1998). Application of genetic algorithms to the design optimization of an active vehicle suspension system. Computer Methods in Applied Mechanics and Engineering, 163(1–4), 87–94. https://doi.org/10.1016/S0045-7825(98)00004-8 .
Boileau, P., & Rakheja, S. (1998). Whole-body vertical biodynamic response characteristics of the seated body biodynamic response under vertical vibration. Journal of Sound and Vibrations, 215(4), 841–862. https://doi.org/10.1016/S0169-8141(97)00030-9 .
Bouarroudj, N., Boukhetala, D., Djari, A., Rais, Y., & Benlahbib, B. (2017). FLC based Gaussian membership functions tuned by PSO and GA for MPPT of photovoltaic system: a comparative study. In 2017 6th international conference on systems and control, ICSC 2017 (pp. 317–322). https://doi.org/10.1109/ICoSC.2017.7958640 .
Bovenzi, M. (2005). Health effects of mechanical vibrations. Giornale Italiano di Medicina del Lavoro ed Ergonomia, 27(1), 58–64.
Celin, P. S., & Rajeswari, K. (2012). GA tuned Type-2 fuzzy logic controller for vehicle suspension system. In Proceedings: international conference on computing, electronics and electrical technologies [ICCEET] (pp. 383–388). Kumaracoil. https://doi.org/10.1109/ICCEET.2012.6203863 .
Chen, H., & Chang, S. (2006). Genetic algorithms based optimization design of a PID controller for an active magnetic bearing. IJCSNS International Journal of Computer Science and Network Security, 6(12), 95–99.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017 .
Fuller, C. R., Elloit, S. J., & Nelson, P. A. (1996). Active control of vibrations. London: Academic Press.
Gad, S., Metered, H., Bassuiny, A., & Abdel Ghany, A. (2017). Multi-objective genetic algorithm fractional-order PID controller for semi-active magnetorheologically damped seat suspension. Journal of Vibration and Control, 23(8), 1248–1266. https://doi.org/10.1177/1077546315591620 .
He, L., Qin, G., Zhang, Y., & Chen, L. (2008). Non-stationary random vibration analysis of vehicle with fractional damping. 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), 2, 150–157. https://doi.org/10.1109/ICICTA.2008.348 .
Hernández-Díaz, A. G., Coello, C. A. C., Pérez, F., Caballero, R., Molina, J., & Santana-Quintero, L. V. (2008). Seeding the initial population of a multi-objective evolutionary algorithm using gradient-based information. In 2008 IEEE congress on evolutionary computation, CEC 2008 (pp. 1617–1624). https://doi.org/10.1109/CEC.2008.4631008 .
Holland, J. H. (1975). Adaptation in natural and artificial systems. Michigan: MIT Press.
Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–72. https://doi.org/10.1038/scientificamerican0792-66 .
Huang, S. J., & Chao, C. H. (2000). Fuzzy logic controller for a vehicle active suspension system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214(1), 1–12. https://doi.org/10.1243/0954407001527178 .
ISO 2631-1 (1997) Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration.
ISO 8608. (1995). Mechanical vibration – Road surface profile – Reporting of measured data (1st ed.).
Kalaivani, R., Lakshmi, P., & Sudhagar, K. (2014). Hybrid (DEBBO) fuzzy logic controller for quarter car model. In Proceedings - UKACC international conference on control (pp. 301–306). Loughborough.
Kesarkar, A. A., & Selvaganesan, N. (2015). Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm. Systems Science and Control Engineering, 3(1), 99-105. https://doi.org/10.1080/21642583.2014.987480 .
Li, P., & Du, X. (2006). A GA optimization for FLC with its rule base and scaling factors adjustment. In Proceedings: International Conference on Intelligent Computing-Part II (pp. 1–10). Kunming. https://doi.org/10.1007/11816171_1 .
Liu, Y.-H., Wang, S.-C., & Peng, B.-R. (2016). Determining optimal membership functions of a FLC-based MPPT algorithm using the particle swarm optimization method. In Proceedings - 2016 5th IIAI international congress on advanced applied informatics, IIAI-AAI 2016. https://doi.org/10.1109/IIAI-AAI.2016.123 .
Lixia, J., & Wanxiang, L. (2008). Chaotic vibration of a nonlinear quarter -vehicle model. In Proceedings - IEEE vehicle power and propulsion conference (pp. 1–4). Harbin.
McGee, C., Haroon, M., Adams, D., & Luk, Y. (2005). A frequency domain technique for characterizing nonlinearities in a tire-vehicle suspension system. Journal of Vibration and Acoustics, 127(1), 61–76. https://doi.org/10.1115/1.1855931 .
Metered, H., Elsawaf, A., Vampola, T., & Sika, Z. (2015). Vibration control of MR-damped vehicle suspension system using PID controller tuned by particle swarm optimization. SAE International Journal of Passenger Cars - Mechanical Systems, 8(2), 01–0622. https://doi.org/10.4271/2015-01-0622 .
Nagarkar, M. P., Vikhe Patil, G. J., & Zaware Patil, R. N. (2016). Optimization of nonlinear quarter car suspension–seat–driver model. Journal of Advanced Research, 7(6), 991–1007. https://doi.org/10.1016/j.jare.2016.04.003 .
Niu, X. (2014). The optimization for PID controller parameters based on genetic algorithm. Applied Mechanics and Materials, 513-517, 4102–4105. https://doi.org/10.4028/www.scientific.net/AMM.513-517.4102 .
Rajendiran, S., & Lakshmi, P. (2016). Simulation of PID and fuzzy logic controller for integrated seat suspension of a quarter car with driver model for different road profiles. Journal of Mechanical Science and Technology, 30(10), 4565–4570. https://doi.org/10.1007/s12206-016-0927-6 .
Rosenthal, S., & Borschbach, M. (2014). Impact of population size and selection within a customized NSGA-II for biochemical optimization assessed on the basis of the average cuboid volume indicator. In Proceedings - Sixth International conference on bioinformatics, biocomputational systems and biotechnologies (pp. 1–7). Chamonix: BIOTECHNO.
Salem, M. M. M., & Aly, A. A. (2009). Fuzzy control of a quarter-car suspension system. World Academy of Science, Engineering and Technology, 53, 258–263.
Song, L. (2011). NGPM-A NSGA-II Program in Matlab - User Manual. Version 4.1 (pp. 1–20).
Song, L. (2015). NGPM-A NSGA-II Program in Matlab v14. Matlab Code. http://in.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4 . Accessed on 15 Mar 2015.
Talib, M. H. A., & Darus, I. Z. M. (2014). Development of fuzzy logic controller by particle swarm optimization algorithm for semi-active suspension system using magneto-rheological damper. WSEAS Transactions on Systems and Control, 9, 77–85.
Tammam, M. A., Magdy, A. S., Aboelela, M. A., Moustafa, & Seif, A. E. A. (2013). A multi-objective genetic algorithm based PID controller for load frequency control of power systems. International Journal of Emerging Technology and Advanced Engineering, 3(12), 463–467.
Taskin, Y., Hacioglu, Y., & Yagiz, N. (2007). The use of fuzzy-logic control to improve the ride comfort of vehicles. Strojniski Vestnik/Journal of Mechanical Engineering, 53(4), 233–240.
Taskin, Y., Hacioglu, Y., & Yagiz, N. (2017). Experimental evaluation of a fuzzy logic controller on a quarter car test rig. Journal of Brazilian Society of Mechanical Science and Engineering, 39(7), 2433–2445. https://doi.org/10.1007/s40430-016-0637-0 .
Van Niekerk, J. L., Pielemeier, W. J., & Greenberg, J. A. (2003). The use of SEAT effective amplitude transmissibility (SEAT) values to predict dynamic seat comfort. Journal of Sound and Vibration, 260(5), 867–888. https://doi.org/10.1016/S0022-460X(02)00934-3 .
Wong, J. Y. (2001). Theory of ground vehicles. NY: Wiley.
Zhang, Y., Chen, W., Chen, L., & Shangguan, W. (2007). Non-stationary random vibration analysis of vehicle with fractional damping. In Proceedings - 13th national conference on mechanisms and machines (NaCoMM07) (pp. 171–178). Bangalore.