G1-like M and PB2 genes are preferentially incorporated into H7N9 progeny virions during genetic reassortment

Springer Science and Business Media LLC - Tập 17 - Trang 1-10 - 2021
Xiuli Li1, Min Gu1, Xiaoquan Wang1, Ruyi Gao1, Xinxin Bu1, Xiaoli Hao1, Jing Ma1, Jiao Hu1, Shunlin Hu1, Xiaowen Liu1, Sujuan Chen1, Daxin Peng1, Xinan Jiao2,3,4, Xiufan Liu1,2,3,4
1Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
2Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
3Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
4Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China

Tóm tắt

Genotype S H9N2 viruses have become predominant in poultry in China since 2010. These viruses frequently donate their whole internal gene segments to other emerging influenza A subtypes such as the novel H7N9, H5N6, and H10N8 viruses. We recently reported that the PB2 and M genes of the genotype S H9N2 virus, which are derived from the G1-like virus, enhance the fitness of H5Nx and H7N9 avian influenza viruses in chickens and mice. However, whether the G1-like PB2 and M genes are preferentially incorporated into progeny virions during virus reassortment remains unclear; whether the G1-like PB2 and M genes from different subtypes are differentially incorporated into new virion progeny remains unknown. We conducted a reassortment experiment with the use of a H7N9 virus as the backbone and found that G1-like M/PB2 genes were preferentially incorporated in progeny virions over F/98-like M/PB2 genes. Importantly, the preference varied among G1-like M/PB2 genes of different subtypes. When competing with F/98-like M/PB2 genes during reassortment, both the M and PB2 genes from the H7N9 virus GD15 showed an advantage, whereas only the PB2 gene from the H9N2 virus CZ73 and the M gene from the H9N2 virus AH320 displayed the advantage. Our findings highlight the preferential and variable advantages of H9N2-derived G1-like M and PB2 genes in incorporating them into H7N9 progeny virions over SH14-derived F/98-like M/PB2 genes.

Tài liệu tham khảo

Sun Y, et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet Microbiol. 2010;146(3–4):215–25. Gu M, et al. Current situation of H9N2 subtype avian influenza in China. Vet Res. 2017;48(1):49. Liu YF, et al. Endemic variation of H9N2 avian influenza virus in China. Avian Dis. 2016;60(4):817–25. Gu M, et al. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Vet Microbiol. 2014;174(3–4):309–15. Huang Y, et al. Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res. 2010;151(1):26–32. Gu M, et al. Genome sequencing and genetic analysis of a natural reassortant H5N1 subtype avian influenza virus possessing H9N2 internal genes. Bing Du Xue Bao. 2010;26(4):298–304. Chen H, et al. Clinical and epidemiological characteristics of a fatal case of avian influenza a H10N8 virus infection: a descriptive study. Lancet. 2014;383(9918):714–21. Pu J, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci U S A. 2015;112(2):548–53. Zhu C, et al. Genetic characteristics of H9N2 avian influenza viruses isolated from free-range poultry in eastern China, in 2014-2015. Poult Sci. 2018. Chang HP, et al. Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs. J Zhejiang Univ Sci B. 2018;19(5):409–14. Hao X, Hu J, Wang X, et al. The PB2 and M genes are critical for the superiority of genotype S H9N2 virus to genotype H in optimizing viral fitness of H5Nx and H7N9 avian influenza viruses in mice. Transbound Emerg Dis 2020;67:758–68. Hao X, et al. The PB2 and M genes of genotype S H9N2 virus contribute to the enhanced fitness of H5Nx and H7N9 avian influenza viruses in chickens. Virology. 2019;535:218–26. Pu J, et al. M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. J Virol. 2017:91(8). Kutyavin IV, et al. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 2000;28(2):655–61. Lew AE, et al. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5′ Taq nuclease assays with fluorescent 3′ minor groove binder-DNA probes. J Virol Methods. 2004;116(1):1–9. van Doorn HR, et al. Detection of a point mutation associated with high-level isoniazid resistance in mycobacterium tuberculosis by using real-time PCR technology with 3′-minor groove binder-DNA probes. J Clin Microbiol. 2003;41(10):4630–5. Rong E, et al. Heteroplasmy detection of mitochondrial DNA A3243G mutation using quantitative real-time PCR assay based on TaqMan-MGB probes. Biomed Res Int. 2018;2018:1286480. Essere B, et al. Critical role of segment-specific packaging signals in genetic reassortment of influenza a viruses. Proc Natl Acad Sci U S A. 2013;110(40):E3840–8. Inagaki A, et al. Competitive incorporation of homologous gene segments of influenza a virus into virions. J Virol. 2012;86(18):10200–2. Octaviani CP, et al. High level of genetic compatibility between swine-origin H1N1 and highly pathogenic avian H5N1 influenza viruses. J Virol. 2010;84(20):10918–22. Octaviani CP, Goto H, Kawaoka Y. Reassortment between seasonal H1N1 and pandemic (H1N1) 2009 influenza viruses is restricted by limited compatibility among polymerase subunits. J Virol. 2011;85(16):8449–52. McDonald SM, et al. Reassortment in segmented RNA viruses: mechanisms and outcomes. Nat Rev Microbiol. 2016;14(7):448–60. Tao H, et al. Influenza a virus Coinfection through transmission can support high levels of Reassortment. J Virol. 2015;89(16):8453–61. Sun W, et al. Genetic analysis and biological characteristics of different internal gene origin H5N6 reassortment avian influenza virus in China in 2016. Vet Microbiol. 2018;219:200–11. Marshall N, et al. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog. 2013;9(6):e1003421. Zhu R, et al. Genetic and biological characterization of H9N2 avian influenza viruses isolated in China from 2011 to 2014. PLoS One. 2018;13(7):e0199260. Gao R, et al. Human infection with a novel avian-origin influenza a (H7N9) virus. N Engl J Med. 2013;368(20):1888–97. Fan M, et al. Human influenza a(H7N9) virus infection associated with poultry farm. Emerg Infect Dis. 2014;20(11):1902–5. Zhong L, et al. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza a viruses in chickens. J Virol. 2014;88(17):9568–78. Hoffmann E, et al. A DNA transfection system for generation of influenza a virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97(11):6108–13. REED LJ, MUENCH H. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS. Am J Epidemiol. 1938;27(3):493–7.