G-quadruplex DNA for construction of biosensors

TrAC Trends in Analytical Chemistry - Tập 132 - Trang 116060 - 2020
Hualin Yang1,2, Yu Zhou1, Juewen Liu2
1College of Life Science, College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
2Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Tài liệu tham khảo

Lake, 2019, DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions, Acc. Chem. Res., 52, 3275, 10.1021/acs.accounts.9b00419 Liu, 2017, Discovery and biosensing applications of diverse RNA-cleaving DNAzymes, Accounts Chem. Res., 50, 2273, 10.1021/acs.accounts.7b00262 Zhou, 2017, Metal sensing by DNA, Chem. Rev., 117, 8272, 10.1021/acs.chemrev.7b00063 Tan, 2020, Nucleic acid aptamers for molecular diagnostics and therapeutics: Advances and perspectives, Angew. Chem. Int. Ed. Peng, 2020, Functional nucleic acids for cancer theranostics, Coord. Chem. Rev., 403, 213080, 10.1016/j.ccr.2019.213080 Chen, 2020, Aptamer as a versatile molecular tool for antibody production monitoring and quality control, J. Am. Chem. Soc., 142, 12079, 10.1021/jacs.9b13370 Georgiades, 2010, Interaction of metal complexes with G-quadruplex DNA, Angew. Chem. Int. Ed., 49, 4020, 10.1002/anie.200906363 Murat, 2011, Methods for investigating G-quadruplex DNA/ligand interactions, Chem. Soc. Rev., 40, 5293, 10.1039/c1cs15117g Travascio, 1998, DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex, Chem. Biol., 5, 505, 10.1016/S1074-5521(98)90006-0 Sen, 2011, RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean?, Crit. Rev. Biochem. Mol., 46, 478, 10.3109/10409238.2011.618220 Chiorcea-Paquim, 2014, Redox behaviour of G-quadruplexes, Electrochim. Acta, 126, 162, 10.1016/j.electacta.2013.07.150 Wu, 2019, A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter, Food Chem., 298, 125034, 10.1016/j.foodchem.2019.125034 Ma, 2013, Label-free luminescent oligonucleotide-based probes, Chem. Soc. Rev., 42, 3427, 10.1039/c2cs35472a Ruttkay-Nedecky, 2013, G-quadruplexes as sensing probes, Molecules, 18, 14760, 10.3390/molecules181214760 Kosman, 2011, Peroxidase-mimicking DNAzymes for biosensing applications: a review, Anal. Chim. Acta, 707, 7, 10.1016/j.aca.2011.08.050 Ma, 2016, A tutorial review for employing enzymes for the construction of G-quadruplex-based sensing platforms, Anal. Chim. Acta, 913, 41, 10.1016/j.aca.2016.01.043 Lagnado, 2013, The story of quadruplex DNA–it started with a Bang!, Biochemist, 35, 44, 10.1042/BIO03502044 Zimmerman, 1975, X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid, J. Mol. Biol., 92, 181, 10.1016/0022-2836(75)90222-3 Han, 2000, G-quadruplex DNA: a potential target for anti-cancer drug design, Trends Pharmacol. Sci., 21, 136, 10.1016/S0165-6147(00)01457-7 Huppert, 2008, Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes, Chem. Soc. Rev., 37, 1375, 10.1039/b702491f Zhou, 2012, Tri-G-quadruplex: controlled assembly of a G-quadruplex structure from three G-rich strands, Angew. Chem. Int. Ed., 51, 11002, 10.1002/anie.201205390 Zheng, 2019, Ultrastable bimolecular G-quadruplexes programmed DNA nanoassemblies for reconfigurable biomimetic DNAzymes, ACS Nano, 13, 11947, 10.1021/acsnano.9b06029 Li, 2009, Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates, J. Am. Chem. Soc., 131, 15082, 10.1021/ja9051075 Masiero, 2010, A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures, Org. Biomol. Chem., 8, 2683, 10.1039/c003428b Huppert, 2005, Prevalence of quadruplexes in the human genome, Nucleic Acids Res., 33, 2908, 10.1093/nar/gki609 Huppert, 2007, G-quadruplexes in promoters throughout the human genome, Nucleic Acids Res., 35, 406, 10.1093/nar/gkl1057 Lane, 2008, Stability and kinetics of G-quadruplex structures, Nucleic Acids Res., 36, 5482, 10.1093/nar/gkn517 Kotch, 2000, A lead-filled G-quadruplex: insight into the G-quartet's selectivity for Pb2+ over K+, Org. Lett., 2, 3277, 10.1021/ol0065120 Gu, 1999, A new insight into the structure and stability of Hoogsteen hydrogen-bonded G-tetrad: an ab initio SCF study, Chem. Phys. Lett., 311, 209, 10.1016/S0009-2614(99)00821-0 Hud, 1996, The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic analysis by 1H NMR, Biochemistry, 35, 15383, 10.1021/bi9620565 Xu, 1993, Selective localization and rotational immobilization of univalent cations on quadruplex DNA, Biochemistry, 32, 13130, 10.1021/bi00211a023 Deng, 1996, Kinetics of sodium ion binding to DNA quadruplexes, J. Mol. Biol., 255, 476, 10.1006/jmbi.1996.0039 Hardin, 1992, Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG), Biochemistry, 31, 833, 10.1021/bi00118a028 Venczel, 1993, Parallel and antiparallel G-DNA structures from a complex telomeric sequence, Biochemistry, 32, 6220, 10.1021/bi00075a015 Smirnov, 2000, Lead is unusually effective in sequence-specific folding of DNA, J. Mol. Biol., 296, 1, 10.1006/jmbi.1999.3441 Kwan, 2007, Trivalent lanthanide metal ions promote formation of stacking G-quartets, Chem. Commun., 4286, 10.1039/b710299b Blume, 1997, Divalent transition metal cations counteract potassium-induced quadruplex assembly of oligo(dG) sequences, Nucleic Acids Res., 25, 617, 10.1093/nar/25.3.617 Hong, 2011, Mass spectrometric studies of alkali metal ion binding on thrombin-binding aptamer DNA, J. Am. Soc. Mass Spectrom., 21, 1245, 10.1016/j.jasms.2010.03.035 Ouameur, 2003, Thallium-DNA complexes in aqueous solution. Major or minor groove binding, J. Biomol. Struct. Dyn., 20, 561, 10.1080/07391102.2003.10506872 Seo, 2012, Specific and nonspecific bindings of alkaline-earth metal ions to guanine-quadruplex thrombin-binding aptamer DNA, Int. J. Mass Spectrom., 330, 262, 10.1016/j.ijms.2012.09.002 Siters, 2014, Selective binding of Zn2+ complexes to human telomeric G-quadruplex DNA, Inorg. Chem., 53, 11540, 10.1021/ic501484p Pratviel, 2016, Porphyrins in complex with DNA: modes of interaction and oxidation reactions, Coord. Chem. Rev., 308, 460, 10.1016/j.ccr.2015.07.003 Haq, 1999, Intercalative G-tetraplex stabilization of telomeric DNA by a cationic porphyrin1, J. Am. Chem. Soc., 121, 1768, 10.1021/ja981554t Wheelhouse, 1998, Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl) porphine with quadruplex DNA, J. Am. Chem. Soc., 120, 3261, 10.1021/ja973792e Parkinson, 2007, Structural basis for binding of porphyrin to human telomeres, Biochemistry, 46, 2390, 10.1021/bi062244n Phan, 2005, Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter, Nat. Chem. Biol., 1, 167, 10.1038/nchembio723 Cochran, 1990, Antibody-catalyzed porphyrin metallation, Science, 249, 781, 10.1126/science.2389144 Li, 1996, A catalytic DNA for porphyrin metallation, Nat. Struct. Biol., 3, 743, 10.1038/nsb0996-743 Nicoludis, 2012, Interaction of human telomeric DNA with N-methyl mesoporphyrin IX, Nucleic Acids Res., 40, 5432, 10.1093/nar/gks152 Nicoludis, 2012, Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA, J. Am. Chem. Soc., 134, 20446, 10.1021/ja3088746 Wang, 2020, Highly sensitive detection of melamine in milk samples based on N-methylmesoporphyrin IX/G-quadruplex structure, Microchem. J., 155, 104751, 10.1016/j.microc.2020.104751 Shi, 2020, A novel aptasensor strategy for protein detection based on G-quadruplex and exonuclease III-aided recycling amplification, Chin. Chem. Lett., 31, 155, 10.1016/j.cclet.2019.06.020 He, 2017, Facile and sensitive fluorescence sensing of alkaline phosphatase activity using NMM/G-quadruplex, Talanta, 172, 171, 10.1016/j.talanta.2017.05.041 Li, 2016, Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity, Nucleic Acids Res., 44, 7373, 10.1093/nar/gkw634 Brown, 1976, Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution, Biochem. J., 153, 279, 10.1042/bj1530279 Melø, 1986, The physicochemical state of protoporphyrin IX in aqueous solution investigated by fluorescence and light scattering, Biophys. Chem., 25, 99, 10.1016/0301-4622(86)85070-0 Li, 2010, Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion, Anal. Chem., 82, 7576, 10.1021/ac1019446 Zhang, 2013, Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion, Biosens. Bioelectron., 39, 268, 10.1016/j.bios.2012.07.058 Arthanari, 1998, Fluorescent dyes specific for quadruplex DNA, Nucleic Acids Res., 26, 3724, 10.1093/nar/26.16.3724 Sabharwal, 2014, N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes, FEBS J., 281, 1726, 10.1111/febs.12734 Shimizu, 2015, Characterization of the interaction between heme and a parallel G-quadruplex DNA formed from d (TTAGGGT), Bull. Chem. Soc. Jpn., 88, 644, 10.1246/bcsj.20140374 Travascio, 2001, The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA, J. Am. Chem. Soc., 123, 1337, 10.1021/ja0023534 Travascio, 2000 Sun, 2018, Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline, Dyes Pigments, 149, 867, 10.1016/j.dyepig.2017.11.031 Srinivasan, 2019, Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP, Anal. Bioanal. Chem., 411, 1319, 10.1007/s00216-018-1484-x Bai, 2017, A rapid biosensor for highly sensitive protein detection based on G-quadruplex-Thioflavin T complex and terminal protection of small molecule-linked DNA, Sensor. Actuator. B Chem., 252, 1146, 10.1016/j.snb.2017.07.181 Luo, 2019, Lighting up the native viral RNA genome with a fluorogenic probe for the live-cell visualization of virus infection, J. Am. Chem. Soc., 141, 5182, 10.1021/jacs.8b10265 Wang, 2019, A duplex connection can further illuminate G-quadruplex/crystal violet complex, Chem. Commun., 55, 1911, 10.1039/C8CC09940E Dong, 2017, Luminescent detection of nicking endonuclease Nb. BsmI activity by using a G-quadruplex-selective iridium(III) complex in aqueous solution, Sensor. Actuator. B Chem., 246, 826, 10.1016/j.snb.2017.02.156 Zang, 2019, A split G-quadruplex-specific dinuclear Ir(III) complex for label-free luminescent detection of transcription factor, Talanta, 202, 259, 10.1016/j.talanta.2019.05.021 Wang, 2016, Conjugating a groove-binding motif to an Ir(III) complex for the enhancement of G-quadruplex probe behavior, Chem. Sci., 7, 2516, 10.1039/C6SC00001K Wang, 2016, Development of an Iridium(III) complex as a G-quadruplex probe and its application for the G-quadruplex-based luminescent detection of picomolar insulin, Anal. Chem., 88, 981, 10.1021/acs.analchem.5b04064 Feng, 2017, DNA mimics of red fluorescent proteins (RFP) based on G-quadruplex-confined synthetic RFP chromophores, Nucleic Acids Res., 45, 10380, 10.1093/nar/gkx803 Zheng, 2020, Rational design of red fluorescent and selective G-quadruplex DNA sensing probes: the study of interaction signaling and the molecular structural relationship achieving high specificity, Sensor. Actuator. B Chem., 128075, 10.1016/j.snb.2020.128075 Sun, 2017, Novel fluorescent cationic benzothiazole dye that responds to G-quadruplex aptamer as a novel K+ sensor, Analyst, 142, 3352, 10.1039/C7AN01062A Khusbu, 2018, Thioflavin T as a fluorescence probe for biosensing applications, Trac. Trends Anal. Chem., 109, 1, 10.1016/j.trac.2018.09.013 Amdursky, 2012, Molecular rotors: what lies behind the high sensitivity of the thioflavin-T fluorescent marker, Acc. Chem. Res., 45, 1548, 10.1021/ar300053p Liu, 2014, Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor, Anal. Chem., 86, 1622, 10.1021/ac403326m Mohanty, 2013, Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA, J. Am. Chem. Soc., 135, 367, 10.1021/ja309588h Hu, 2012, Perylene ligand wrapping G-quadruplex DNA for label-free fluorescence potassium recognition, Biosens. Bioelectron., 38, 396, 10.1016/j.bios.2012.06.042 Yu, 2020, A supramolecular probe of cyanine dye for Pb2+ detection based on the recognition of a G-quadruplex from DNA duplexes, Anal. Methods, 12, 1182, 10.1039/C9AY02446H Xie, 2013, Asymmetric distyrylpyridinium dyes as red-emitting fluorescent probes for quadruplex DNA, Chem. Eur J., 19, 1214, 10.1002/chem.201203710 Zhang, 2019, Biocompatible G-Quadruplex/BODIPY assembly for cancer cell imaging and the attenuation of mitochondria, Bioorg. Med. Chem. Lett, 29, 1943, 10.1016/j.bmcl.2019.05.043 Tera, 2010, Visualization of G-quadruplexes by using a BODIPY-labeled macrocyclic heptaoxazole, Org. Biomol. Chem., 8, 2749, 10.1039/c002117b Ye, 2019, Polarity inversion sensitized G-quadruplex metal sensors with K+ tolerance, Biosens. Bioelectron., 145, 111703, 10.1016/j.bios.2019.111703 Peng, 2019, Efficient DNA-catalyzed porphyrin metalation for fluorescent ratiometric Pb2+ detection, Anal. Chem., 91, 11403, 10.1021/acs.analchem.9b02759 Xu, 2017, A highly sensitive turn-on fluorescent sensor for Ba2+ based on G-quadruplexes, J. Fluoresc., 27, 569, 10.1007/s10895-016-1984-z Xiong, 2019, An “off–on” phosphorescent aptasensor for the detection of thrombin based on PRET, Analyst, 144, 161, 10.1039/C8AN01571F Nonaka, 2010, Screening and improvement of an anti-VEGF DNA aptamer, Molecules, 15, 215, 10.3390/molecules15010215 Wu, 2018, Label-free G-quadruplex aptamer fluorescence assay for ochratoxin A using a thioflavin T probe, Toxins, 10, 198, 10.3390/toxins10050198 Chen, 2019, Highly active G-quadruplex/hemin DNAzyme for sensitive colorimetric determination of lead (II), Microchim. Acta, 186, 786, 10.1007/s00604-019-3950-3 Yang, 2016, Direct fluorescent detection of blood potassium by ion-selective formation of intermolecular G-quadruplex and ligand binding, Anal. Chem., 88, 9285, 10.1021/acs.analchem.6b02667 Bayrac, 2020, Label-free G-Quadruplex aptamer and Thioflavin-T based turn-off fluorescent detection of ethanolamine, Dyes Pigments, 172, 107788, 10.1016/j.dyepig.2019.107788 Ueyama, 2002, A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet− potassium ion complex formation, J. Am. Chem. Soc., 124, 14286, 10.1021/ja026892f Li, 2013, Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide, Biosens. Bioelectron., 43, 69, 10.1016/j.bios.2012.11.039 Hoang, 2016, G-quadruplex DNA for fluorescent and colorimetric detection of thallium (I), ACS Sens., 1, 137, 10.1021/acssensors.5b00147 Lin, 2017, Aggregation/dispersion conversion of hypericin by noncanonically structured DNA and a fluorescent Ba2+ sensor, Sensor. Actuator. B Chem., 247, 19, 10.1016/j.snb.2017.02.173 Wu, 2017, Human telomeric hybrid-2-over-hybrid-1 G-quadruplex targeting and a selective hypersaline-tolerant sensor using abasic site-engineered monomorphism, Anal. Chim. Acta, 964, 161, 10.1016/j.aca.2017.01.041 Yang, 2020 Geng, 2020, An improved structure-switch aptamer-based fluorescent Pb2+ biosensor utilizing the binding induced quenching of AMT to G-quadruplex, Chem. Commun., 56, 10517, 10.1039/D0CC03669B Deore, 2020, Ratiometric fluorescent sensing of the parallel G-quadruplex produced by PS2.M: implications for K+ detection, Analyst, 145, 1288, 10.1039/C9AN02122A Platella, 2017, G-quadruplex-based aptamers against protein targets in therapy and diagnostics, BBA-Gen. Subjects, 1861, 1429, 10.1016/j.bbagen.2016.11.027 Bock, 1992, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, 355, 564, 10.1038/355564a0 Freeman, 2012, Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF), Anal. Chem., 84, 6192, 10.1021/ac3011473 Ishikawa, 1993, Nuclear proteins that bind the pre-mRNA 3'splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n, Mol. Cell Biol., 13, 4301 Zhang, 2020, Photodriven regeneration of G-quadruplex aptasensor for sensitively detecting thrombin, Anal. Chem., 92, 7419, 10.1021/acs.analchem.0c00380 Jo, 2016, Detection of ochratoxin A (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor, Food Chem., 194, 1102, 10.1016/j.foodchem.2015.07.152 Fu, 2016, A label-free DNAzyme fluorescence biosensor for amplified detection of Pb2+-based on cleavage-induced G-quadruplex formation, Talanta, 147, 302, 10.1016/j.talanta.2015.10.004 Li, 2018, Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21, Talanta, 178, 974, 10.1016/j.talanta.2017.10.023 Peng, 2018, Probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine for label-free switchable molecular sensing, Analyst, 143, 3814, 10.1039/C8AN00914G Connelly, 2019, Toward a rational approach to design split G-quadruplex probes, ACS Chem. Biol., 14, 2701, 10.1021/acschembio.9b00634 Lan, 2019, A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy, Anal. Chim. Acta, 1079, 207, 10.1016/j.aca.2019.06.063 Kang, 2017, A colorimetric sensor for hydrogen sulfide detection using direct inhibition of active site in G-quadruplex DNAzyme, Dyes Pigments, 139, 187, 10.1016/j.dyepig.2016.11.050 Wu, 2020, A visual Hg2+ detection strategy based on distance as readout by G-quadruplex DNAzyme on microfluidic paper, Food Chem., 127208, 10.1016/j.foodchem.2020.127208 Li, 2020, Multi-channel collection of G-quadruplex transducers for amplified signaling of Pax-5 based on target-triggered split-to-intact remodeling of dual-G-rich duplex probe, Sensor. Actuator. B Chem., 127913, 10.1016/j.snb.2020.127913 Huang, 2019, A sensitive Aptasensor based on a hemin/G-Quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes, Small, 15, 1900735, 10.1002/smll.201900735 Ye, 2020, Peptide-conjugated hemin/G-quadruplex as a versatile probe for “signal-on” electrochemical peptide biosensor, Talanta, 209, 120611, 10.1016/j.talanta.2019.120611 Liang, 2018, Chemiluminescence assay for detection of 2-hydroxyfluorene using the G-quadruplex DNAzyme-H2O2-luminol system, Microchim. Acta, 185, 54, 10.1007/s00604-017-2555-y Cai, 2016, A fluorometric assay platform for caffeic acid detection based on the G-quadruplex/hemin DNAzyme, Analyst, 141, 4456, 10.1039/C6AN00543H Shahbazi, 2017, A facile and rapid aptasensor based on split peroxidase DNAzyme for visual detection of carcinoembryonic antigen in saliva, Sensor. Actuator. B Chem., 253, 794, 10.1016/j.snb.2017.06.024 Lv, 2019, Exploration of intramolecular split G-quadruplex and its analytical applications, Nucleic Acids Res., 47, 9502, 10.1093/nar/gkz749 Li, 2018, A DNA as a substrate and an enzyme: direct profiling of methyltransferase activity by cytosine methylation of a DNAzyme, Chem. Eur J., 24, 14500, 10.1002/chem.201802822 Shahsavar, 2017, A sensitive colorimetric aptasensor with a triple-helix molecular switch based on peroxidase-like activity of a DNAzyme for ATP detection, Anal. Methods, 9, 4726, 10.1039/C7AY01381G Wang, 2019, G-quadruplex-bridged triple-helix aptamer probe strategy: a label-free chemiluminescence biosensor for ochratoxin A, Sensor. Actuator. B Chem., 298 Hu, 2017, One-step colorimetric detection of an antibody based on protein-induced unfolding of a G-quadruplex switch, Chem. Commun., 53, 4692, 10.1039/C7CC00687J Alizadeh, 2017, A highly sensitive electrochemical immunosensor for hepatitis B virus surface antigen detection based on Hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme-signal amplification, Biosens. Bioelectron., 94, 184, 10.1016/j.bios.2017.02.039 Li, 2017, A both-end blocked peroxidase-mimicking DNAzyme for low-background chemiluminescent sensing of miRNA, ACS Sens., 2, 810, 10.1021/acssensors.7b00178 Wu, 2016, Colorimetric strategy for highly sensitive and selective simultaneous detection of histidine and cysteine based on G-quadruplex-Cu(II) metalloenzyme, Anal. Chem., 88, 2899, 10.1021/acs.analchem.5b04796 Zhang, 2020, Suppressing the background activity of hemin for boosting the sensitivity of DNAzyme-based biosensors by SYBR Green I, Biosens. Bioelectron., 169, 112603, 10.1016/j.bios.2020.112603 Wang, 2012, Enantioselective Friedel–Crafts reactions in water catalyzed by a human telomeric G-quadruplex DNA metalloenzyme, Chem. Commun., 48, 6232, 10.1039/c2cc31320k Wang, 2018, Electrochemical strategy for pyrophosphatase detection based on the peroxidase-like activity of G-quadruplex-Cu2+ DNAzyme, Talanta, 178, 491, 10.1016/j.talanta.2017.09.069 Ma, 2020, A highly sensitive and adjustable colorimetric assay of hydrogen sulfide by signal amplification based on G-quadruplex-Cu2+ peroxidase mimetics, Analyst, 145, 2995, 10.1039/D0AN00093K Shan, 2019, Cu-DNAzyme facilitates highly sensitive immunoassay, Chin. Chem. Lett., 30, 1652, 10.1016/j.cclet.2019.05.037 Guo, 2012, A G-quadruplex based label-free fluorescent biosensor for lead ion, Biosens. Bioelectron., 35, 123, 10.1016/j.bios.2012.02.031 Qu, 2012, Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions, Mol. Biosyst., 8, 779, 10.1039/C2MB05446A Zhang, 2011, A novel Tb3+-promoted G-quadruplex-hemin DNAzyme for the development of label-free visual biosensors, Biosens. Bioelectron., 26, 4053, 10.1016/j.bios.2011.03.029 Chen, 2018, How proximal nucleobases regulate the catalytic activity of G-quadruplex/hemin DNAzymes, ACS Catal., 8, 11352, 10.1021/acscatal.8b03811 Wei, 2018, Ultrasensitive aptasensor with DNA tetrahedral nanostructure for Ochratoxin A detection based on hemin/G-quadruplex catalyzed polyaniline deposition, Sensor. Actuator. B Chem., 276, 1, 10.1016/j.snb.2018.08.072 Xu, 2015, Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin, Biosens. Bioelectron., 64, 306, 10.1016/j.bios.2014.09.018 Li, 2008, G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin, Chem. Commun., 3654, 10.1039/b805565c Li, 2010, A lead(II)-Driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity, J. Am. Chem. Soc., 132, 13156, 10.1021/ja105849m Zhu, 2019, G-quadruplex-assisted enzyme strand recycling for amplified label-free fluorescent detection of UO22+, Chin. Chem. Lett., 30, 58, 10.1016/j.cclet.2018.02.003 Deore, 2019, Ligand-induced G-quadruplex polymorphism: a DNA nanodevice for label-free aptasensor platforms, J. Am. Chem. Soc., 141, 14288, 10.1021/jacs.9b06533 Feng, 2019, Engineering of nucleic acids and synthetic cofactors as holo sensors for probing signaling molecules in the cellular membrane microenvironment, Angew. Chem. Int. Ed., 58, 6590, 10.1002/anie.201901320 Chinnapen, 2004, A deoxyribozyme that harnesses light to repair thymine dimers in DNA, Proc. Natl. Acad. Sci. U.S.A., 101, 65, 10.1073/pnas.0305943101 Li, 2020, Lipophilic G-quadruplex isomers as biomimetic ion channels for conformation-dependent selective transmembrane transport, Anal. Chem., 92, 10169, 10.1021/acs.analchem.0c02222