Fuzzy ontology-based approach for liver fibrosis diagnosis
Tài liệu tham khảo
Alexopoulos, 2012, IKARUS-Onto: a methodology to develop fuzzy ontologies from crisp ones, Knowledge and information systems, 32, 667, 10.1007/s10115-011-0457-6
Alharbi, R.F., Berri, J., El-Masri, S., 2015. Ontology based clinical decision support system for diabetes diagnostic. In: 2015 Science and Information Conference (SAI), pp. 597–602. https://doi.org/10.1109/SAI.2015.7237204.
Bau, 2014, Construction of a clinical decision support system for undergoing surgery based on domain ontology and rules reasoning, Telemedicine and e-Health, 20, 460, 10.1089/tmj.2013.0221
Berges, 2011, Toward semantic interoperability of electronic health records, IEEE Transactions on Information Technology in Biomedicine, 16, 424, 10.1109/TITB.2011.2180917
Bobillo, 2016, The role of crisp elements in fuzzy ontologies: The case of fuzzy owl 2 el, IEEE Trans. Fuzzy Syst., 24, 1193, 10.1109/TFUZZ.2015.2505329
Bobillo F., S.U., 2009. Fuzzy description logics with fuzzy truth values. In: in Proc. IFSA-EUSFLAT Conf., pp. 189–194.
Bobillo F., S.U., 2016. The fuzzy ontology reasoner fuzzydl. Knowledge-based Syst. 95, 12–34.
Bucsics T., Grasl B., F.A.S.P.M.M.Z.K.S.R.C.D.S.B.S.W.R.M.R.T., 2018. Point shear wave elastography for non-invasive assessment of liver fibrosis in patients with viral hepatitis. Ultrasound Med. Biol 12, 1–9.
del Carmen Legaz-García M, Martínez-Costa C, M.T.M.F.B.J., 2016. A semantic web based framework for the interoperability and exploitation of clinical models and ehr data. Knowledge-Based Syst. 105, 175–189.
Chen, Shyi-Ming, H.Y.H.C.R.C.Y.S.W.S.T.W., 2012. Using fuzzy reasoning techniques and the domain ontology for anti-diabetic drugs recommendation. In: In Proc of the Intelligent Information and Database Systems, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 125–135.
Chen, 2019, Fuzzy ontology construction for liver fibrosis staging, J. Biomed. Inform., 90, 103088
Chen, S., Z.Y..Z.X., 2019. A hybrid approach for liver fibrosis classification using fuzzy ontology and deep learning. Comput. Biol. Med. 109, 1–8.
Cross, V., Kandasamy, M., 2011. Fuzzy concept lattice construction: a basis for building fuzzy ontologies. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), IEEE. pp. 1743–1750.
EBobillo F., S.U., 2011. fuzzy ontology representation using owl2. Int. J. Approximate Reason. 52, 1073–1094.
El-Hariri M., El-Megid A., A.T.H.M., 2017. Diagnostic value of transient elastography (fibroscan) in in the evaluation of liver fibrosis in chronic viral hepatitis c: comparison to liver biopsy. Egypt. J. Radiol. Nucl. Med. 48486, 329–337.
El-Sappagh, 2017, A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain, Eng. Sci. Technol. Int. J., 20, 1025
El Serafy M., Kassem A., O.H.M.M.E.R.M., 2017. Apri test and hyaluronic acid as non-invasive diagnostic tools for post hcv liver fibrosis: systematic review and meta-analysis. Arab J. Gastroenterol. 18, 51–57.
Elhefny M., Elmogy M., E.A., 2015. Developing a fuzzy owl ontology for obesity related cancer domain. Int. J. Medical Eng. Informat. 9, 162–187.
Elsappagh S., Elmogy M., R.A., 2015. A fuzzy ontology oriented case based reasoning framework for semantic diabetes diagnosis. Artif. Intell. Med. (ARTMED). 65, 179–208.
Fakhfakh, Khouloud, O.S.B.J.L.S.G.R.J.M.H.S.Z.B.H., 2021. Fuzzy ontology for patient emergency department triage. In: Computational Science – ICCS 2021, Springer International Publishing, Cham. pp. 719–734.
Gomathi, C., R.V..J.K., 2015. Prediction of diabetes using fuzzy ontology approach. Int. J. Eng. Res. Technol. (IJERT) TITCON 3.
Khosravi, 2006, Evaluation of a fuzzy ontology-based medical information system, Int. J. Healthcare Infr. Syst. Informat., 1, 40, 10.4018/jhisi.2006010103
Li, 2020, An intelligent fuzzy ontology-based system for liver fibrosis diagnosis, IEEE Access, 8, 21604
Liu, 2022, Fuzzy ontology-based decision support system for liver fibrosis management, Front. Med., 9, 856480
Messaoudi R., Jaziri F., M.A.B.M.A.H.A.A.F.H., 2018. Ontology based approach for liver cancer diagnosis and treatment. Physica A., 1–15.
Parry, D., MacRae, J., 2013a. Fuzzy ontologies for cardiovascular risk prediction-a research approach. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE. pp. 1–4.
Parry, D., MacRae, J., 2013b. Fuzzy ontologies for cardiovascular risk prediction-a research approach. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE. pp. 1–4.
Rajendran V., S.S., 2015. Moss-ir: multi ontology based search system for information retrieval in e-health domain. In: in Proc. of Graph Algorithms, High Performance Implementations and Applications conference(ICGHIA2014), pp. 179–187.
Rodríguez, 2014, A fuzzy ontology for semantic modelling and recognition of human behaviour, Knowl.-Based Syst., 66, 46, 10.1016/j.knosys.2014.04.016
Sabbeh, 2023, A comparative analysis of word embedding and deep learning for arabic sentiment classification, Electronics, 12, 10.3390/electronics12061425
Sanai F, K.E., 2010. Liver biopsy for histological assessment- the case against. The Saudi J. Gastroenterol. 16, 124–132.
Selvan, N.S., S.V.S.V., Ravi, L., 2019. Fuzzy ontology-based personalized recommendation for internet of medical things with linked open data. J. Intell. Fuzzy Syst. 36, 4065–4075.
Smeeton, 1985, Early history of the kappa statistic, Biometrics, 41, 795
Smith, J.W., B.K..J.P., 2017. Fuzzy ontology-based personalized assessment of liver fibrosis severity. Int. J. Med. Informat. 98, 45–53.
Sweidan, 2019, A fibrosis diagnosis clinical decision support system using fuzzy knowledge, Arabian J. Sci. Eng., 44, 3781, 10.1007/s13369-018-3670-8
Sweidan S., El-Bakry H., S.F., 2020. onstruction of liver fibrosis diagnosis ontology from fuzzy extended er modeling: Construction of fibronto from an eer model. Int. J. Decis. Support Syst. Technol. (IJDSST), IGI Global. 12, 46–69.
SZhang Y., Tian Y., Z.T.A.K.L.J., 2016. Gntegration hl7 rim and ontology for unified knowledge and data representation in clinical decision support systems. computer methoods and programs in biomedicine. Phys. Rev. E. 123, 94–108.
Torshizi A., Zarandi M., T.G.E.K., 2014. A hybrid fuzzy-ontology based intelligent system to determine level of severity and treatment recommendation for benign prostatic hyperplasia. Comput. Methods Programs Biomed. 113, 301–313.
Tsai, 2014
Van Broekhoven, 2006, Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions, Fuzzy Sets Syst., 157, 904, 10.1016/j.fss.2005.11.005
Van Leekwijck, 1999, Defuzzification: criteria and classification, Fuzzy Sets Syst., 108, 159, 10.1016/S0165-0114(97)00337-0
Wang, 2010, Property and application of fuzzy ontology for dietary assessment, 1
Wang, 2021, A hybrid approach for liver fibrosis diagnosis using fuzzy ontology and machine learning, Int. J. Fuzzy Syst., 23, 1729
Yaguinuma C., Santos M., C.H.R.M., 2013. A fml-based hybrid reasoner combining fuzzy ontology and mamdani inference. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Springer International Publishing, Hyderabad. pp. 1–8.
Zadeh, 1965, Fuzzy sets, Inf. Control, 8, 338, 10.1016/S0019-9958(65)90241-X
Zamzami, 2023, Arabic news classification based on the country of origin using machine learning and deep learning techniques, Appl. Sci., 13, 10.3390/app13127074
Zhang, F., Ma, Z.M., Lv, Y., Wang, X., 2008. Formal semantics-preserving translation from fuzzy er model to fuzzy owl dl ontology. In: 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, IEEE. pp. 503–509.
Zhang, 2022, Kinrob: An ontology based robot for solving kinematic problems, Int. J. Know.-Based Intell. Eng. Syst., 26, 299
Zhang, 2018, A fuzzy ontology-based approach for liver fibrosis diagnosis, J. Med. Syst., 42, 148