Fuzzy logics based on [0,1)-continuous uninorms

Springer Science and Business Media LLC - Tập 46 Số 5-6 - Trang 425-449 - 2007
Dov M. Gabbay1, George Metcalfe2
1King's College London
2Vanderbilt University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Avron A. (1987). A constructive analysis of RM. J. Symb. Log. 52(4): 939–951

Avron A. (1991). Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4(3–4): 225–248

Baaz M., Hájek P., Montagna F. and Veith H. (2001). Complexity of t-tautologies. Ann. Pure Appl. Log. 113(1): 3–11

Cignoli R. and Torrens A. (2005). Standard completeness of Hájek basic logic and decompositions of BL-chains. Soft Comput. 9(12): 862–868

Cintula, P.: Weakly implicative (fuzzy) logics I: basic properties. Arch. Math. Log. 45(6) (2007)

De Baets B. and Fodor J. (1999). Residual operators of uninorms. Soft Comput. 3: 89–100

De Baets B. and Fodor J. (1999). Van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104: 133–136

Fodor J., Yager R.R. and Rybalov A. (1997). Structure of uni-norms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5: 411–427

Gabbay D., Metcalfe G. and Olivetti N. (2004). Hypersequents and fuzzy logic. Revista de la Real Academia de Ciencias (RACSAM) 98(1): 113–126

Girard J. (1987). Linear logic. Theoret. Comput. Sci. 50: 1–102

Gottwald, S.: A treatise on many-valued logics. In: Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock (2000)

Gurevich Y.S. and Kokorin A.I. (1963). Universal equivalence of ordered abelian groups (in Russian). Algebra i logika 2: 37–39

Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

Hájek P. and Valdés J. (1994). An analysis of MYCIN-like expert systems. Mathw. Soft Comput. 1: 45–68

Hart J., Rafter L. and Tsinakis C. (2002). The structure of commutative residuated lattices. Int. J. Algebra Comput. 12(4): 509–524

Hu S. and Li Z. (2001). The structure of continuous uni-norms. Fuzzy Sets Syst. 124: 43–52

Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. (to appear)(2007)

Metcalfe G., Olivetti N. and Gabbay D. (2004). Analytic proof calculi for product logics. Arch. Math. Log. 43(7): 859–889

Metcalfe G., Olivetti N. and Gabbay D. (2005). Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Trans. Comput. Log. 6(3): 578–613

Silvert W. (1979). Symmetric summation: a class of operations on fuzzy sets. IEEE Trans. Man. Cybern. 9: 657–659

Yager R.R. (2001). Uninorms in fuzzy systems modelling. Fuzzy Sets Syst. 122: 167–175

Yager R.R. (2002). Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 141(1): 217–232

Yager R.R. and Rybalov A. (1996). Uninorm aggregation operators. Fuzzy Sets Syst. 80: 111–120