Fuzzy logics based on [0,1)-continuous uninorms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Avron A. (1991). Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4(3–4): 225–248
Baaz M., Hájek P., Montagna F. and Veith H. (2001). Complexity of t-tautologies. Ann. Pure Appl. Log. 113(1): 3–11
Cignoli R. and Torrens A. (2005). Standard completeness of Hájek basic logic and decompositions of BL-chains. Soft Comput. 9(12): 862–868
De Baets B. and Fodor J. (1999). Van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104: 133–136
Fodor J., Yager R.R. and Rybalov A. (1997). Structure of uni-norms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5: 411–427
Gabbay D., Metcalfe G. and Olivetti N. (2004). Hypersequents and fuzzy logic. Revista de la Real Academia de Ciencias (RACSAM) 98(1): 113–126
Gottwald, S.: A treatise on many-valued logics. In: Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock (2000)
Gurevich Y.S. and Kokorin A.I. (1963). Universal equivalence of ordered abelian groups (in Russian). Algebra i logika 2: 37–39
Hájek P. and Valdés J. (1994). An analysis of MYCIN-like expert systems. Mathw. Soft Comput. 1: 45–68
Hart J., Rafter L. and Tsinakis C. (2002). The structure of commutative residuated lattices. Int. J. Algebra Comput. 12(4): 509–524
Metcalfe G., Olivetti N. and Gabbay D. (2004). Analytic proof calculi for product logics. Arch. Math. Log. 43(7): 859–889
Metcalfe G., Olivetti N. and Gabbay D. (2005). Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Trans. Comput. Log. 6(3): 578–613
Silvert W. (1979). Symmetric summation: a class of operations on fuzzy sets. IEEE Trans. Man. Cybern. 9: 657–659
Yager R.R. (2002). Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 141(1): 217–232